Computers in Industry 99 (2018) 156-172

COMPUTERS IN -
INDUSTRY. -

K i ok gl

Contents lists available at ScienceDirect

Computers in Industry

journal homepage: www.elsevier.com/locate/compind

Fault tolerance in cloud computing environment: A systematic survey R

Check for
updates

Moin Hasan®, Major Singh Goraya

Department of Computer Science and Engineering, Sant Longowal Institute of Engineering and Technology, India

ARTICLE INFO ABSTRACT

Fault tolerance is among the most imperative issues in cloud to deliver reliable services. It is difficult to im-
plement due to dynamic service infrastructure, complex configurations and various interdependencies existing in
cloud. Extensive research efforts are consistently being made to implement the fault tolerance in cloud.
Implementation of a fault tolerance policy in cloud not only needs specific knowledge of its application domain,
but a comprehensive analysis of the background and various prevalent techniques also. Some recent surveys try
to assimilate the various fault tolerance architectures and approaches proposed for cloud environment but seem
to be limited on some accounts. This paper gives a systematic and comprehensive elucidation of different fault
types, their causes and various fault tolerance approaches used in cloud. The paper presents a broad survey of
various fault tolerance frameworks in the context of their basic approaches, fault applicability, and other key
features. A comparative analysis of the surveyed frameworks is also included in the paper. For the first time, on
the basis of an analysis of various fault tolerance frameworks cited in the present paper as well as included in the
recently published prime surveys, a quantified view on their applicability is presented. It is observed that pri-
marily the checkpoint-restart and replication oriented fault tolerance techniques are used to target the crash

Keywords:

Cloud computing
Faults and failures
Fault tolerance
Survey

faults in cloud.

1. Introduction

Cloud computing has been prominently existing as an on-demand
computing service paradigm and immensely benefiting the small-scale
users as well as large-scale commercial and scientific applications. It is
defined as a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services) that can be
rapidly provisioned and released with minimal management effort or
service provider interaction [1]. On-demand access, resource au-
tonomy, rapid elasticity and always-on availability are the primary
characteristics of cloud computing [2]. Cloud resources are provisioned
using standard protocols (IAM, OAuth, OpenID, etc. for authentication;
and AMI, OVF, SOAP, REST, etc. for data and workload migration [3])
to create the wider acceptability of cloud services. Besides this, cloud
offers greater business agility at the reduced cost which further attracts
a vast user base. A recent survey conducted over 433 enterprise re-
spondents containing 1000+ employees reveals that 95% of the re-
spondents are using cloud [4]. Kazarian et al. [5] reported 91% adop-
tion of cloud by the IT professionals in more than 3000 small and
midsize businesses. Anticipating its vast benefits, distinguished IT or-
ganizations (such as Amazon, Microsoft, IBM, Google, Yahoo, etc.) are
into the foray to deliver cloud services.

* Corresponding author.

Though, cloud has gathered much attention over the time, but it is
still considered adolescent in terms of fault handling capability [6]. The
cloud computing architecture is dynamic and growing in complexity
[7-9]. Its deployment uses millions of commodity components rather
than conventional ones [10]. Due to this, it is always prone to faults and
failures. Fault is an abnormal condition or defect in one or many parts
of a system, which may result in the inability of the system to perform
its intended functions [11]. Fault occurrence creates error in the
system. Error is defined as a deterioration in one or more system
components and creates difference between normal and actual state of
the system [12]. The errors lead the system to failure, which interrupts
the normal delivery of the services and degrades the system perfor-
mance. Improper handling of system failures may lead the system to an
unworkable state [11]. The effects are so adverse at times that they
could traumatize the economic state of the service provider. For in-
stance, in 2013, a breakdown of just about 45 min resulted in an eco-
nomic loss of $5 million to Amazon cloud [13]. It may be one of the
reasons for the reluctance of a big pool of users towards acquiring cloud
services and makes fault tolerance as one of the most imperative issues
in cloud computing.

Fault tolerance is defined as the capability of a system to keep per-
forming its intended task even in the presence of faults [14,15]. Without
fault tolerance capability, even a well-designed system with best of the

E-mail addresses: mmoinhhasan@gmail.com (M. Hasan), mjrsingh@yahoo.com (M.S. Goraya).

https://doi.org/10.1016/j.compind.2018.03.027

Received 14 July 2017; Received in revised form 16 January 2018; Accepted 20 March 2018

0166-3615/ © 2018 Elsevier B.V. All rights reserved.

http://www.sciencedirect.com/science/journal/01663615
https://www.elsevier.com/locate/compind
https://doi.org/10.1016/j.compind.2018.03.027
https://doi.org/10.1016/j.compind.2018.03.027
mailto:mmoinhhasan@gmail.com
mailto:mjrsingh@yahoo.com
https://doi.org/10.1016/j.compind.2018.03.027
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2018.03.027&domain=pdf

M. Hasan, M.S. Goraya

components and services cannot be considered as reliable [16]. Reliability
is a highly significant facet of cloud, as a large number of delay sensitive
(real-time) applications are to be executed. Moreover, service reliability is
imperative to the wider acceptability of cloud. Therefore, the issue of fault
tolerance has got a considerable attention in research and numerous fault
tolerance frameworks have been proposed in literature over the period.
Through this paper, we endeavour to present a survey of fault tolerance in
the cloud computing environment.

1.1. Motivation of the survey

In the literature, we observe that despite extensive research in the
field of fault tolerance in cloud, only a few surveys [17-19,16,20,21]
have been published. Although, these surveys have considerable con-
tribution in the field, but in themselves, do not seem to be exhaustive
and comprehensive. These surveys appear to be limited in respect of
one or other account.

Cheraghlou et al. [16] gave only a brief description of different fault
tolerance techniques without focusing on fault types. Further, the dis-
cussion of only a few number of frameworks in the survey limits its
scope. [21] focused directly on fault tolerance and classified fault tol-
erance policies as exclusively handled and collaboratively handled. This
survey does not provide view on the conventional classification of the
fault tolerance models in cloud. Agarwal and Sharma [17] gave the
taxonomies of fault, error and failure; but missed the theoretical ex-
planation. The authors have not included any existing fault tolerance
framework in the survey to strengthen the discussion of fault tolerance
techniques. Ataallah et al. [19] included a brief description of various
fault tolerance parameters in their survey, but failed to include the
description of fault types. Very limited frameworks have been explained
in this survey which are insufficient to describe the state-of-the-art.
Several types of faults and fault tolerance techniques are briefly de-
scribed in the survey given by Saikia and Devi [20]. However, authors
have not given any classification of the described faults and fault tol-
erance techniques in the survey. Further, only a few fault tolerance
frameworks are included in the survey without citing any comparative
analysis. Amin et al. [18] also enlisted various fault tolerance metrics
along with a brief description about fault detection. Again, very limited
fault tolerance frameworks are explained without any reflection of the
methodology of fault tolerance used in the frameworks.

It can apparently be concluded that none of the above cited surveys
presents the complete structure of fault tolerance in cloud computing.
In order to understand the complete structure of fault tolerance the
readers have to refer different sources. Therefore, we motivated to write
a comprehensive and systematic survey on fault tolerance in cloud by
describing its complete structure which includes the description of (a)
various fault types, their causes and classification; (b) fault tolerance
approaches and techniques; and (c) fault tolerance frameworks.
Table 1. summarises and present a comparative analysis of the existing
surveys cited in this paper and the present survey in the context of
inclusion (v*) and non-inclusion (x) of the attributes: fault taxonomy,
fault tolerance approaches, fault tolerance frameworks, comparative
analysis, and graphical representation.

Table 1
Comparison of the present survey with the cited surveys.

Computers in Industry 99 (2018) 156-172

1.2. Scope of the survey
Scope of the present survey is:

® Description of various fault types and their causes in cloud com-
puting environment.

® Description of basic fault tolerance approaches used in cloud com-
puting environment.

e Description of different fault tolerance frameworks proposed in lit-
erature for cloud computing environment.

Fault types are explained in a tabular form for the ease of under-
standing. A comparative analysis of the surveyed frameworks is also
given which focuses on the basic approach, methodologies used, fault
applicability and key features.

1.3. Survey plan and organization

The survey plan broadly includes article selection, fault classifica-
tion, identification of fault tolerance approaches and methods, de-
scription of fault tolerance frameworks, discussion and future direc-
tions. The survey plan is executed through multiple phases described as
follows:

® Phase-1 (Articles Selection): In the first phase number of research
articles (including surveys) related to the field are collected from
reputed sources. The collected articles are carefully examined and
filtered based on their titles, abstracts, and research contributions.
While examining the research contributions, the novelty and quality
of the work is critically analysed. The articles (regarding each fault
tolerance method) for inclusion in the paper are selected with the
criteria that the reader would be able to know the basic im-
plementations and possible modifications/customization of each
fault tolerance method. Necessary efforts are made to assure and
maintain the diversity of the articles in order to remove the ambi-
guity and enhance the knowledge base of the readers.

® Phase 2 (Fault Classifications in Cloud): In the second phase, the
collected articles are intensely scrutinized to identify different fault
types in cloud. The identified fault types are thoroughly analysed for
their categorization. Section 2 includes the brief description of dif-
ferent fault types, their root causes, and classification in cloud.

® Phase 3 (Fault Tolerance Approaches in Cloud): In this phase, the
collected articles are further analysed to identify various fault tol-
erance approaches in cloud. The identified approaches are enlisted
and described in Section 3 of the survey. The fault tolerance
methods based on the identified approaches are also explained and
hierarchically presented in Section 3.

® Phase 4 (Fault Tolerance Frameworks in Cloud): This phase contains
the core research contribution of this survey to explain various fault
tolerance frameworks proposed in the literature. The objective is to
provide an evolutionary knowledge base in such a way that the
research contribution towards each fault tolerance method could be
covered. Section 4 explains various prominent fault tolerance

Survey Paper Fault Taxonomy Fault Tolerance

Approaches

Fault Tolerance
Frameworks

Comparative Analysis of
Frameworks

Graphical Representation of
Results

Cheraghlou et al [16]
Tchana et al. [21]
Agarwal and Sharma [17]
Ataallah et al.[19]

Saikia and Devi [20]
Amin et al. [18]

Present Survey

A X AU X S X X
S xS\

SN XN

S X XS X XN

X X X X NX

157

M. Hasan, M.S. Goraya

frameworks in the context of basic implementation details, fault
applicability, evaluation methodology, and key features.
® Phase 5 (Survey Discussion, Future Directions, and Conclusions): In the

last phase, surveyed fault tolerance frameworks are deeply analysed

to present the survey results. This phase also includes research di-

rections and survey conclusions. Section 5 discusses various ob-

servations and results drawn from the survey, which includes:

O a quantified view on how much a particular fault category is
targeted in the research.

O a quantified view on how much a particular fault tolerance
method is utilized in the research.

O a comparative analysis of various fault tolerance frameworks
described in the survey.

Based on the existing challenges observed from the literature,
probable future research directions concerning fault tolerance in cloud
are given in Section 6. Finally, the paper is concluded in Section 7.

2. Fault classification and architecture of fault tolerance in cloud
2.1. Fault classification in cloud

Jhawar and Piuri [10] classified the faults into two broad categories
as crash faults and byzantine faults, described as follows

e Crash Faults: The faults occur due to the failure of one or more
system components (e.g., power supply, storage disks, memory
chips, processors, network switches and routers, etc.) are called
crash faults. Occurrence of such faults affects the physical structure
of the system and manual interaction is generally required for the
repair of the affected component(s). Software agents may be de-
ployed to tolerate these faults.

Byzantine faults: The faults which create an ambiguity in the expected
output resulting in unpredictable conditions are known as byzantine
faults. Occurrence of byzantine faults affects the logical structure of the
system and does not require manual interaction as they can be handled
through proper fault tolerance strategies. It may be quite difficult to
properly examine and conclude the byzantine conditions due to the
complexity and diversity existing in the system.

Cloud possesses a distributed architecture, therefore, its faults are
almost similar to those in other distributed computing paradigms [10].
Numerous types of faults are pointed out in the literature specific to the
cloud environment [22,12,13]. These faults can be classified into the
above two categories. However, certain fault types may be categorized
as both crash as well as byzantine faults as shown in Fig. 1. Table 2
presents the brief description of various fault types in cloud.

Crash faults

Configuration fault

Hardware fault

Network fault

Participant fault

Constraint fault

Resource contention fault

Retrospective fault

Stochastic fault

Computers in Industry 99 (2018) 156-172

2.2. Architecture of fault tolerance in cloud

The cloud architecture is broadly comprised of a physical layer and
an abstraction layer [23,1]. The Physical layer includes hardware
components (CPU, storage, network, etc.) upon which the abstraction
layer is deployed to provide the cloud services. Corresponding to the
delivered services the abstraction layer is further divided into Infra-
structure as a Service (IaaS) layer, Platform as a Service (PaaS) layer,
and Software as a Service (SaaS) layer. [1]. The failure of any hardware
component in the physical layer affects the abstraction layer and con-
sequently the service delivery. Due to the interdependencies in the
service delivery layers, fault tolerance in cloud follows layered archi-
tecture where fault in one layer may affect its upper layer(s) [24] as
shown in Fig. 2. Faults in the PaaS layer may affect the SaaS layer and
faults in IaaS layer may affect both PaaS and SaaS layers. For example,
if the operating system installed at the platform crashes, the applica-
tions running on the operating system at the SaaS layer will also stop
working. Similarly, if the hard drive of a host at the IaaS layer burns
out, the operating system installed on the host at the PaaS layer will
also crash, which in turn will stop its running applications at the SaaS
layer.

Faults erupted in the physical layer may have the severest con-
sequences and a robust fault tolerance is required at the infrastructure
level for the seamless service provisioning. However, certain faults are
specific to their respective layers, independent of the underlying ar-
chitecture. For example, a run-time exception at PaaS$ or a virus attack
at SaaS. The general fault tolerance procedure in cloud environment is
as follows:

The fault detection mechanism is applied at the respective service
layers to detect their probable faults. Corresponding to a services layer
(laaS/PaaS/SaaS), fault types, or application environment, different
fault detection mechanisms have been adopted in the research [16]. For
example, faults at IaaS are generally detected through health mon-
itoring techniques, like heartbeat protocol [25]. Many of the byzantine
faults are detected through voting mechanisms. Various fault detection
mechanisms used in the literature along with the fault tolerance fra-
meworks are discussed in Section 4. After fault detection at a specific
layer, its corresponding fault tolerance procedure is called to neu-
tralize/minimize its effect on service. The successful service delivery is
achieved if no fault occurs on any layer. A non-detected fault may result
in failure of service. In such case, the other measures may be adopted to
minimize its effect on the service. If required service rescheduling [26]
may also be applied.

3. Fault tolerance approaches in cloud

The fault tolerance approaches are broadly classified into two basic

Byzantine faults

Parametric fault

Software fault

System fault

Time constraint fault

Fig. 1. Fault categorization in cloud.

158

M. Hasan, M.S. Goraya

Table 2
Categorization of various fault types in cloud.

Computers in Industry 99 (2018) 156-172

Fault Type Category (Crash/Byzantine) Brief Description
Configuration fault Crash Occurs when the ordering of the system components is disturbed
Constraint fault Both Occurs when a fault condition arises and ignored by the responsible agent
Hardware fault Crash Occurs at the infrastructure level in the service delivery model of the cloud system due to the failure of any hardware
component
Network fault Crash Occurs due to the failure in either of network components (e.g., switches, routers, etc.)
Parametric fault Byzantine Occurs due to unknown variation in the parameters
Participant fault Both Occurs due to the conflict between cloud participants like consumer, provider, administrator, etc.
Resource contention fault ~ Both Resultant of the conflict when a resource is being shared for the access
Retrospective fault Both Occurs due to the lack of information about the past behavior of the system
Software fault Byzantine Generally, the resultants of software updates in the system
Stochastic fault Both Occurs due to insufficient statistical information to assess the system state
System fault Byzantine Occurs due to incomplete knowledge of the processes that control the service provisioning in the system
Time constraint fault Byzantine Refers to the situation which causes an application unable to complete before the specified deadline
3.1.1. Self-Healing
| Fault (SaaS) | It is defined as the capability of a system to have an autonomous
recovery from faults by periodically applying specific fault recovery
procedures consisting of supervision tasks [31]. A system can perceive
the erroneous conditions independent of human interactions and can
I Fault (PaaS) | make guided adjustments to restore the normal state [32]. It is inspired
from the biological fact, “How organisms manage to survive in difficult
situations [33,34].” A self-healing fault tolerant system requires various
I Fault (faaS) | fault aspects (location, duration, intensity, etc.) to be looked carefully
aul a:
for its successful action. The performance of self-healing systems im-

Fig. 2. Fault relationship in cloud.

categories, viz. proactive and reactive [17,18,27,16,28,29]. Based on
these approaches, several methodologies have been adopted in the lit-
erature to achieve fault tolerance. They are discussed as follows and
shown hierarchically in Fig. 3.

3.1. Proactive approaches

The word proactive in context of fault tolerance is defined as the
ability of the system to be in a prepared or controlled state for handling
the possible interruptions (faults, errors, failure) before they occur. The
system state in proactive approaches is continuously monitored and the
fault occurrence is estimated using the artificial intelligence techniques.
Necessary actions are then taken to prevent the fault occurrence.
Working of these approaches is based on the experience and expecta-
tion [30]. The proactive fault tolerant systems remain uninterrupted
until the expectation matches with the experience. Proactive fault tol-
erance in cloud environment can be achieved in the following ways
[18,27,16,29]:

proves with time as different faults are encountered which enhances the
system experience.

3.1.2. Pre-emptive migration

It is defined as the capability of a system to proactively move the
computation away from suspicious computing nodes [35,36]. In this
method, pre-fault indicators over the system are used to predict the
occurrence of any fault in the nodes in near future. The tasks from fault
probable nodes are pre-emptively shifted to other nodes [30]. Fault
tolerant systems based on pre-emptive migration follow more prob-
abilistic approach and usually focus on the failure rates of invidual
computing nodes rather than focusing on the various fault aspects.

3.1.3. System rejuvenation

It is a process of taking periodic backup of the system. After each
backup, the system is cleaned and repaired from any kind of bugs and
errors. The backup is then reinstated, and a refreshed system state is
achieved. There are two basic types of system rejuvenation, viz. fixed
time rejuvenation where the time interval between any two consecutive
rejuvenation events remains same and variable time rejuvenation where
the time interval between any two consecutive rejuvenation events may
vary according to the working conditions [37]. Rejuvenation can also

Fault
Tolerance

Proactive Reactive
v \4 \ 4 A 4 \ 4 \ 4
Self-healing Preemptive System Checkpoint Job migration Replication
miigration Rejuvenation restart

Fig. 3. Classification of fault tolerance approaches in cloud.

M. Hasan, M.S. Goraya

be categorized as full (all the system components are rejuvenated at a
time) and partial (some of the system components are rejuvenated at a
time). Since, cloud is a heterogeneous environment where different
components may have different failure rates, partial rejuvenation at
different instances of time looks to be of more use rather than full re-
juvenation.

3.2. Reactive approaches

The reactive fault tolerance approaches handle the faults after their
occurrence. The influences of occurred faults are abridged using system
maintenance programs. The working of reactive approaches is response
based rather than anticipation [30]. Reactive approaches are usually
conservative in nature and need not to examine the system behaviour.
Hence, they do not pose any unnecessary overhead. Reactive fault
tolerance in cloud can be achieved using following methods
[18,27,16,29]:

3.2.1. Checkpoint restart

Task execution states are periodically saved in this method. In case
of any failure, the task is restarted from the last saved state rather than
restarting from the beginning. The desired features of any checkpoint
restart technique are scalability, transparency, and portability [38].
Checkpoint restart is one of the most popular fault tolerance method
and has found great applicability in the existing fault tolerant systems
due to its dual applicability. Dual applicability means that it can be
used as both stand-alone as well as auxiliary fault tolerance method. The
frequency of taking checkpoints can be adjusted according to the failure
rates of the system components so as to optimize the overhead. Various
implementations of checkpoint restart may be found through [39,40].

3.2.2. Job migration

In this method, if the resource (executing the task) fails, the task is
migrated to some other similar suitable resource instance. It is generally
used to tolerate crash faults. However, unlike pre-emptive migration
(where migration takes place after the prediction of fault), this method is
reactive as the migration takes place after the fault occurrence. Job
migration usually associates communication overheads only and tra-
ditionally used for soft deadline applications. Retry is a variation of job
migration method, which is used in a few fault tolerance frameworks in
cloud [41,26]. In retry, a failed task is executed from the beginning
either at the same resource or at some other resource. In case of by-
zantine faults, retry can be carried out at the same resource for the sake
of resource utilization. However, the number of retry attempts at the
same resource can be confined according to the situation. For example,
after five unsuccessful retry attempts on the same resource, the task
may be migrated to some other resource.

3.2.3. Replication

In this method, the task is operated on multiple execution instances.
If one instance fails, task execution remains continuous on other in-
stance(s). It can be used to tolerate both crash as well as byzantine
faults and has been used most widely. Two types of replication have
been observed in literature, viz. active replication (both primary and
backup resource(s) perform the operation) and passive replication (only
the primary resource performs the operation and expected to produce
the result, while the backup resource(s) only receive the execution
updates so as to take over the operation in case the primary fails)
[17,42].

Some popular variations of replication method are recovery block, N-
version programming, and active [41]. Among all replicas for a particular
application in recovery block, one is assigned as primary and others are
assigned as standby. If the application on primary fails, it is sequentially
restarted at the available standby replicas. Instead of restarting the
application, it can be check-pointed to mitigate the waiting time. In N-
version programming, the application is simultaneously executed on all

160

Computers in Industry 99 (2018) 156-172

replicas and the final result is decided by voting. However, different
implementation may use different voting methods to obtain respective
results. Active is almost similar to N-version programming except the
fact that it does not use voting mechanisms to obtain the result. The
final result in active is the first correctly received response.

4. Fault tolerance frameworks

This section surveys various fault tolerance frameworks proposed in
the literature. Each framework is explained in adequate detail with
respect to basic fault tolerance approach, methodology used, and var-
ious implementation aspects. Section 4.1 surveys renowned proactive
fault tolerance frameworks, while reactive fault tolerance frameworks
are surveyed in section 4.2. The abbreviations used in the survey are
not standard and are decided by the authors similar to the titles of the
respective frameworks.

4.1. Proactive fault tolerance frameworks

4.1.1. SHelp

Chen et al. [43] proposed a proactive fault tolerance framework
using self-healing method. The authors improved the earlier proposed
framework, named as ASSURE [44]. ASSURE introduced the concept of
rescue points which are the locations in the application code in order to
handle a given set of programmer-anticipated faults. These rescue
points can be reused in order to handle the unanticipated faults. In this
section, the ASSURE framework will be discussed first followed by the
improvements made in SHelp. The ASSURE framework maintains an
execution log by periodically taking the application check-points. For
fault detection, it uses light-weight instrumentation mechanisms for
system monitoring. For fault analysis, it uses a triage system, where the
shadow of the application is deployed. Whenever a fault is detected, the
application is transferred to the triage system from its latest check-
pointed state and the occurred fault is reproduced there in order to
recognize a suitable rescue point. The suitability of a rescue point is
evaluated in terms of its survivability (if the selected point could rescue
the application from the recurrence of fault), correctness (if rescue point
does not introduce semantic errors), and performance (if rescue point
does not impose significant overhead). After the verification of the
rescue point, ASSURE generates a remediation patch and dynamically
embed it into the software. Whenever the same fault reoccurs, the patch
instantiates an appropriate rescue point and the application is rolled
back to do the recovery actions.

The SHelp architecture differs from ASSURE with respect to the way
of selection of the rescue points. ASSURE uses a rescue-trace graph
which is traversed so as to search an appropriate rescue point. It con-
tributes to the overall overhead of the fault tolerance. On the other
hand, SHelp assigns a weight to each rescue point. Initially the weight
of each point is set to zero, but it increases proportionally for a parti-
cular rescue point with respect to the number of times it is applied.
Now, whenever a fault is occurred, the rescue points are searched in the
decreasing order of their weights.

For performance evaluation, a prototype of SHelp is implemented
on Linux and tested over various versions of four different web server
applications, viz. Apache, Light-HTTPd, ATP-HTTPd, and Null-HTTPd.

Key Features: The SHelp framework offers faster functioning and
comparatively lesser overhead than ASSURE. It is because of the in-
troduction of weight assignment to the rescue points, which con-
siderably decreases the searching time.

Limitations: The SHelp framework is limited to tolerate software
faults only.

4.1.2. PFHC

Egwutuoha et al. [45] developed a proactive fault tolerance system
for high performance computing (HPC) applications in cloud. It has
three major modules discussed as follows:

M. Hasan, M.S. Goraya

Node Monitoring Module: It is installed to keep an eye on each node
in the cloud and is equipped with Lm-Sensors [46,47] which are used
to develop FTDaemon in order to monitor various parameters like
CPU temperature, fan speed, etc. Moreover, monitoring is done
periodically rather than continuously so as to minimize the mon-
itoring overhead. Whenever the parameters exceed their set value,
an alarm is triggered prompting the probability of failure.

Fault Tolerance Module: This module takes necessary fault tolerance
actions if a failure is prompted. When an unhealthy node is pre-
dicted, the FTDaemon asks the resource provider to lease another
node. The execution is then migrated to the newly added node and
the administrator is informed to relinquish the unhealthy node.
Controller Module: It is installed on every node and is responsible
for the following tasks:

Implementation of fault tolerance policy

® Provides user credentials to the service provider (c) Live migration of
VMs.

The authors further compared the proposed system with PFHX [48]
in terms of total operational cost for fault tolerance. In [48], n nodes are
provisioned for the computation and m nodes are provisioned in spare
(ahead of any failure prediction). Total operational cost will be the sum
of operational cost of n computation nodes and that of m spare nodes,
regardless whether the operation is failure-prone or failure-free. How-
ever, in PFHC, the spare nodes are only demanded whenever a fault is
predicted, resulting in reduced operational cost. The performance of the
proposed algorithm is evaluated in terms of execution time of different-
sized HPC problems on four servers leased from baremetalcloud [49,50].

Key Features: Being a proactive framework, PFHC tolerates hardware
faults. It is applicable to HPC applications at lower fault tolerance cost.

Limitations: It requires complex implementation to predict un-
healthy nodes and then live migrate the VMs.

4.1.3. WSRC

Bruneo et al. [37] proposed a fault tolerance mechanism for Virtual
Machine Manager (VMM) software in cloud using variable-time software
rejuvenation technique. The failure model of WSRC consists of a failure
detector, which periodically (rather than continuously) inspects the
VMM for any memory mismanagement and response time fluctuation.
In case of any failure, the status of all the running VMs is saved and the
rejuvenation is carried out for VMM repair. The authors varied the
rejuvenation time interval corresponding to the fluctuation in the
workload as follows: Let TX and §; are the timer firing time and time
interval (when workload = i) respectively. Timer firing time is the time
set for the next rejuvenation event. Now, suppose workload changes
from i to j, which consequently changes the interval from §; to ;. The
new firing time is then adjusted as follows:

t
Tl =1, + (1 - T—’;)*aj

Where, t, is the current time. This variable-time rejuvenation policy is
then modelled using Kronecker algebra [51]. The VMM software op-
eration is represented by five states, viz. working state, non-detected
failure state, detected failure state, and rejuvenated state. After the com-
pletion of rejuvenation event, all the VMs are reactivated. The perfor-
mance is evaluated in terms of system availability through simulation
experiment using WebSPN tool [52] over a case study taken from
earlier literature.

Key Features: The WSRC framework offers high resource availability.
Rejuvenation based fault tolerance generally result in high overhead,
and in case of cloud environments (with practically millions of physical
hosts), it is an important concern. WSRC optimizes the fault tolerances
overhead by applying variable time rejuvenation.

Limitations: WSRC can only be applied at infrastructure layer and is
confined to tolerate software faults.

Computers in Industry 99 (2018) 156-172

4.1.4. SRESC

Liu et al. [53] proposed a proactive fault tolerance scheme for cloud
applications using software rejuvenation technique. Each cloud appli-
cation is considered as a combination of interconnected cloud service
components, which may either be tightly-coupled (existing in same VM)
or be loosely-coupled (existing in different VM). These components may
communicate over a high-speed LAN via remote procedure call. The
proposed scheme works in three steps: (a) Aging failure detection, (b)
Aging degree evaluation, and (c) Rejuvenation. The failure is detected in
terms of CPU and memory usage of certain VMs and the transmission
delay. A software agent periodically collects the CPU and memory
usage, encapsulate them into a packet, and transmit it to the aging
failure detector. The expected arrival time of every next packet is then
calculated by averaging the transmission time of previous n packets.
After that the degree of failure is evaluated in terms of two aspects: (a)
arrival time of next packet with respect to the expected arrival time
(before expected, after expected, or lost) and (b) usage of CPU and
memory. Using this information, the severity of the service component
condition is divided into four levels: Level 1- specifies that rejuvenation
is needed immediately; Level 2- specifies that rejuvenation should be
done as soon as possible; Level 3- specifies that the service component
should be monitored and rejuvenation is suggested; and Level 4- spe-
cifies that service component is performing well and no rejuvenation is
needed.

If rejuvenation has to be done, the current running state of the
service component is transmitted to an interim node (lies in the same
network). The VM hosting the service component is also migrated to the
interim node. The original VM is then rebooted and a fresh VM is now
ready for the service component.

Key Features: Along with high availability, SRFSC is capable to re-
juvenate multiple independent VMs.

Limitations: The failure aspects considered in SRFSC are limited to
software aging and crashes.

4.1.5. FTDG

Sun et al. [54] proposed a fault tolerant scheduling framework using
pre-emptive migration for stream computing. The framework archi-
tecture consists of four working spaces; viz. user space, graph space,
storm space, and hardware space. Users submit their respective data
streams through the user space which are transformed into DAGs (Di-
rect Acyclic Graphs) in the graph space. In the graph space, the critical
and non-critical paths of the DAGs are also determined. Scheduling
mechanism including fault tolerance strategy is applied in the storm
space. The hardware space consists of various datacentre resources.
FTDG is proactive as it consistently monitors the arrival rate of the data
streams. When there occurs a considerably large fluctuation in the ar-
rival rate, it may affect the response time. In such case, a vertex from
the critical path is selected and pre-emptively migrated to some other
computing node in a way that the minimum response time would be
maintained. The failure model of FTDG is comprised of failure density
of both the computing nodes as well communication links.

The proposed framework is implemented on Storm which is an open
source distributed computing platform and evaluated in terms of re-
liability, response time, and throughput.

Key Features: Response time is an extremely important aspect in
stream computing and FTDG possesses the feature to maintain
minimum response time.

Limitations: FTDG offers limited fault applicability (parametric faults
only).

4.2. Reactive fault tolerance frameworks

4.2.1. AFTRC

Malik and Huet [55] presented a fault tolerant real-time tasks’ ex-
ecution model in cloud computing, named as Adaptive Fault Tolerance in
Real-time Cloud Computing (AFTRC). In the presented model, the real-

M. Hasan, M.S. Goraya

time incoming tasks are maintained in an input buffer. Tasks in FCFS
manner are then promoted for execution. Each task is replicated on M
virtual machines, which are embedded with different algorithms for
real-time task execution. The result produced by each algorithm is
moved further for the acceptance test (AT), where the correctness of the
result is verified. The results are then moved to the time checker (TC) so
as to check whether the result is obtained before deadline or not. If
none of the results is obtained before deadline, the task is sent back to
input buffer. On the basis of the obtained results, the reliabilities of the
corresponding virtual machines are adjusted by the reliability assessor
(RA). Finally, decision mechanism module (DM) selects the output from
the highest reliable node. Along with replication, checkpoint me-
chanism is also used in AFTRC and the task states are periodically saved
in the recovery cache (RC). To evaluate the AFTRC framework, an ex-
periment is conducted using ProActive grid interface to Amazon EC2
cloud by creating three VMs. The results are obtained by executing a
series of real-time tasks for each VM in terms of their reliabilities.

Mohammed et al. [56] presented a similar fault tolerance strategy
(IVFS) using replication and checkpoint-restart. It is similar in the sense
that the task execution passes through the similar stages as in AFTRC.
The difference is the addition of a cloud load balancer (CLB) and the
way checkpoint is carried out. The CLB contains the load information
regarding each VM in the cloud. After the reception of a task, the cloud
controller (CC) passes it to the CLB, which replicates it on suitable VMs
as per the load information. The checkpoint-restart is implemented
using Reward Renewal Process (RRP) [40]. In RRP the overhead, re-
covery time, and rollback time of the checkpoint depend upon a
random variable which is a function of failure rate. IVFS framework is
implemented using CloudSim simulator [57].

Key Features: AFTRC promises result accuracy and is applicable for
real-time applications.

Limitations: AFTRC may lead to low resource availability when the
workload increases.

4.2.2. BlobCR

Nicolae and Cappello [58] proposed a two-stage checkpoint-restart
mechanism for tightly coupled HPC applications in IaaS clouds using
virtual disk snapshots. Instead of directly storing the checkpoints on the
cloud repository, the local disks of the computing nodes are aggregated
and utilized in a distributed manner, i.e., VM disk snapshots are split
into equal sized chunks and distributed evenly over this local repository.
The first working stage of the check-pointing is about saving the ap-
plication state to the VM disk followed by the second stage in which the
VM instance is suspended and an optimized snapshot of VM disk is saved
to the local disk repository. To optimize the VM disk snapshots, the
concepts of shadowing and cloning [59] are used. Shadowing is basically
the act of storing only the differences between the last check-pointed
state and current check-pointed state, instead of storing the whole ob-
ject. Cloning is on the other hand is the act of duplicating an object
containing all the content of the original. The first snapshot of each VM
instance is cloned and the subsequent incremental differences are then
written to the respective clones and then shadowed as new snapshots.
For recovery purpose, application restart is optimized using lazy transfer
[58] by fetching only the check-pointed files and the files which can be
directly accessed by the guest OS as well the application.

This work is further improved in [38] by including the live incre-
mental snapshotting. For this purpose, the authors utilized the concept of
copy-on-write [60] and introduced selective copy-on-write principle. In
copy-on-write technique, the chunk which has to be modified is copied
to some alternate location and modifications are done on the copy in-
stead of the original one. However, it may be disadvantageous as
copying the chunks to alternate locations may result in the local re-
pository fragmentation and degrades the performance. Moreover, it
cannot be applied when chunks are required to be contiguous locations.
Selective copy-on-write eliminates the problem of fragmentation by
leveraging the fact, “Snapshotting process does not access all chunks

162

Computers in Industry 99 (2018) 156-172

simultaneously.” Thus, if a chunk is scheduled to be accessed in future,
it is copied to an alternate location, and the snapshotting process can be
redirected there. However, if a chunk is actively being accessed by the
snapshotting process, even selective copy-on-write is inapplicable and it
becomes necessary to wait. BlobCR is evaluated in terms of average
downtime using 90 nodes of graphene cluster from Nancy site in France of
Grid 5K testbed.

Key Features: The BlobCR framework offers low storage overhead
and supports live incremental snapshotting.

Limitations: BlobCR may cause fragmentation and is inapplicable for
loosely coupled applications.

4.2.3. BFTCloud

Zhang et al. [61] presented a replication-based fault tolerance fra-
mework for byzantine faults in voluntary-resource cloud computing.
The framework is capable of successfully completing a user’s request in
the presence of maximum f faulty nodes in a replication group (BFT
group) of size 3f+ 1. That is, its fault tolerance capability is approxi-
mately 33% as also suggested by Cheraghlou et al. [16]. The problem of
finding the number of nodes in a replication group is optimized using
the failure probabilities of the available nodes such that the resulting
failure probability of the replication group would always be lesser than
a threshold failure probability. The framework works in five phases
discussed as follows:

e Primary Selection: Each node in cloud is assigned with a QoS value
and a priority weight for each of its attributes. The rating of each
node is calculated by adding the products of QoS value and priority
weight for each attribute. The node with highest rating is then se-
lected as primary. After the primary selection, the cloud module
passes the user’s request to it.
Replica Selection: In order to select the required number of replicas,
the QoS of each node is observed from the perspective of both cloud
module and primary node. The combined QoS is then calculated by
applying one of the suitable transformation rules (which can be
extended according to the requirement). The rating to each node is
then given similar to that in primary selection and the nodes are
ordered with respect to their respective ratings. Finally, the required
nodes with highest ratings are selected. After the replicas selection,
the primary forwards the request for execution to all of them.
® Request Execution: In this phase, all the nodes in BFT group execute
the request and respond the cloud module with their respective
results. The cloud module then checks for the consistency of ob-
tained results corresponding to four cases discussed later. If results
are consistent, next request is forwarded to the primary; else, fault
tolerance procedure (primary updating or replica updating) is trig-
gered. The four cases to check the consistency of results are as fol-
lows: Case 1- If all of 3f+ 1 responses are consistent (means no node
in BFT is faulty), then the cloud module commits the obtained result
to be final. Case 2- If 2f+ 1 to 3f results are consistent (means up to f
nodes may be faulty), the cloud module sends a commit certificate
to all BFT group nodes. If the cloud module receives more than 2f
+ 1 commit messages as acknowledgement, it commits the obtained
consistent results to be final and invokes the replica updating pro-
cedure. Else, it resends the commit certificate until it receives more
than 2f+ 1 acknowledgement messages. Case 3- If less than 2f+1
responses are received (means more than f nodes are faulty), the
cloud module resends the request to all the nodes in BFT group.
Primary node, as usual, forwards the request to the replicas. Each
replica checks whether the sequence numbers of the request sent by
the cloud manager and the primary are same or not. If yes, request is
executed again the responses are resent to the cloud module. Else,
primary updating procedure is triggered. Case 4- If more than 2f+ 1
responses are received, but lesser than f+1 are consistent (means
primary forwarded the requests in disturbed order); primary up-
dating procedures is triggered.

M. Hasan, M.S. Goraya

e Primary Updating: If a replica suspects the primary to be faulty, it
sends a proposal to all other replicas in order to select a new pri-
mary. In case at least f+ 1 proposals are receives by a replica, the
cloud module selects a new replica from the current replicas in the
BFT group.

Replica Updating: The faulty replicas in the BFT group are removed
and new nodes added with respect to the same condition that the
failure probability of the group would be lesser than the threshold
value.

The performance of the proposed framework is evaluated on Planet-
lab cloud [62], which consists of 257 computing nodes across 26
countries.

Key Features: BFTCloud is highly reliable fault tolerance framework
and is capable to tolerate all byzantine faults.

Limitations: The main drawback is its low resource utilization.

4.2.4. AASIF

Radhakrishnan [63] proposed an adaptive fault tolerant approach to
execute the applications in cloud. The applications are modeled using
queuing techniques, as continuous functions of time, in terms of net-
work of FIFO servers (considered cloud model) and flow dynamics of
requests. At each server, the flow dynamics and server state is com-
puted. On the basis of this computation, further action has to be
decided. The incoming requests are first queued according to their ar-
rival times and they are considered as continuous fluid streams. For
each stream, there is an algorithmically determined networked path,
which it has to flow through. Flow dynamics of each server in the
processing server path is computed. Flow dynamics of a server include
server congestion, queue length, queue growth rate, flow processing rate, and
overall service rate. After that, one of the under-saturated, saturated, and
over-saturated server state in concluded. On the basis of flow dynamics
and state of the server, one of the following decisions is made for fault
tolerance:

® Redirect the flow to another instance of the server in the cloud.

® Request additional resources at the local node from the cloud in-
frastructure.

e Spawn additional instances of the server, either at the local node or
in another node.

e Combine server instances to conserve resources.

Finally, the server dynamics are calculated which include mean
service rate and mean latency.

Key Features: The AASIF framework guarantees high resource utili-
zation.

Limitations: The fault tolerance processing may be slow due to its
adaptive approach.

4.2.5. DAFT

Sun et al. [11] modeled a fault tolerant serviceability in cloud
computing environments using the check-pointing technique. The au-
thors first analyzed the mathematical relationship between the different
failure rates and check-pointing strategy and then developed a model to
provide fault tolerant services in cloud named as DAFT (Dynamic
Adaptive Fault Tolerance). The main component of the architecture is
the fault tolerance space where the measures for fault tolerance are
taken. As the name suggests, the check-pointing strategy used is not
conventional, but dynamic and adaptive. It means that the check-point
interval is not constant and it varies corresponding to check-pointing
overhead, fault overhead, fault tolerance overhead, and failure density.
Whenever the failure rate increases, the system adapts to this condition
by dynamically decreasing the check-point interval so that maximum
recovery could be done. On the other hand, when the failure rate de-
creases, the check-point interval increases so that the overhead would
be optimized. Besides dynamic and adaptive, the authors integrated the

163

Computers in Industry 99 (2018) 156-172

full check-pointing and incremental check-pointing to realize a hybrid
check-pointing in order to maintain a trade-off between checkpoint
overhead and fault tolerance overhead.

The performance is evaluated in terms of fault tolerance degree and
fault tolerance overhead with respect to different failure rates by simu-
lating DAFT on CloudSim toolkit [57].

Key Features: DAFT is applicable to all crash faults. Its adaptive
nature optimizes the overhead.

Limitations: The adaptiveness of DAFT is system based rather than
component based, which may affect the fault tolerance.

4.2.6. FTCloud

Zheng et al. [64] proposed a component ranking based fault toler-
ance framework for cloud applications using different variations of
replication technique. The framework follows the “80-20” rule given in
[65-67] and works in two steps. The first step is about ranking the
application components in the cloud, determining their significance,
and selecting k most significant components. In the second step, an
optimal fault tolerance strategy for each of the k most significant
components is selected. Each application is modeled as a directed
weighted graph in which each vertex represents an application com-
ponent possessing a non-negative significance value and each edge is
assigned with a weight (depending upon the invocation frequency).

Two algorithms are proposed to rank the application components,
viz. FTCloud1 (considers only the invocation frequencies of the com-
ponents) and FTCloud2 (considers both invocation frequencies as well
as characteristics of the components). Three variations of replication
based fault tolerance are used, viz. recovery block [68], N-version pro-
gramming [69], and parallel [70]. Failure probability, application cost,
and response time of each fault tolerance strategy is computed. The
initial step to select the optimal fault tolerance strategy is to exclude
those fault tolerance candidates which are unable to satisfy the user
constraints. From the refined fault tolerance candidates, the one having
least failure probability is selected.

Various algorithms of FTCloud framework are implemented in C+
+ in order to evaluate the performance in terms of failure probability.

Key Features: The FTCloud is a reliable framework, suitable for
software faults due to its high accuracy.

Limitations: It requires complex implementation and has low re-
source utilization.

4.2.7. CAMAS

Yi et al. [71] proposed five check-pointing and three migration
strategies to handle out-of-bid situations in spot instances on Amazon
cloud. Proposed five check-pointing schemes are: (a) Optimal Check-
pointing (checkpoint is taken just prior to a probable failure), (b) Hourly
Check-pointing (checkpoint is taken after each hour since the start of
resource usage), (c) Rising Edge-Driven Check-pointing (checkpoint is
taken every time when the spot price of the currently used resource
increases), (d) Basic Adaptive Check-pointing (decision is taken every ten
minutes whether to take checkpoint or not, depending upon the failure
probability), and (e) Current-Price-Based Adaptive Check-pointing (same
as basic adaptive check-pointing except the fact that failure probability is
calculated by considering the spot price as well). Similarly, proposed
three migration schemes are: (a) Lowest Price- The resource instance
with lowest current price is chosen for migration with the perception
that the probability of out-of-bid events in lower price instances is
comparatively lesser. (b) Lowest Failure Rate- The resource instance with
lowest failure rate is chosen for migration with the perception that both
user bid and price are considered in failure rate with respect to the
probability of failure events. (c) Highest Failure Rate- The resource in-
stance with highest failure rate is chosen for migration with the per-
ception that the resources with higher failure rates are more likely to be
uncharged for partial hours as per the Amazon’s spot pricing rules (refer
Fig. 1 of Yi et al. [71]).

For evaluation purpose, 42 types of Amazon’s spot instances are

M. Hasan, M.S. Goraya

considered. The authors claimed current-price-based adaptive check-
pointing to be the best in terms of reducing the cost. However, in respect
of migration, performances of the all schemes are equivalent.

Key Features: CAMAS is highly adaptive and promises quick fault
tolerance with low execution cost.

Limitations: It is confined to tolerate resource contention faults only.

4.2.8. FTM

Jhawar et al. [72] proposed a fault tolerant management framework
in IaaS model of cloud computing. In the framework the fault handling
is supposed to be done by the third party contracted by the cloud
provider and the users are delivered with fault tolerance as a service
(FTaaS). The fault tolerance is applied at the virtualization layer di-
rectly rather than as the application being deployed, by replicating the
whole virtual instance. Faults are detected by a run-time monitoring
system using heartbeat protocol [25]. The primary component peri-
odically sends a liveness request to all the replicated backups. A timer is
maintained for each request. If the replicated backup fails to respond N
liveness requests within a predefined time, it is considered to be failed.
One important feature of FTM is that it implements multiple fault tol-
erance techniques and a suitable technique is applied as per the user’s
requirement. The basic components of the architecture are discussed as
follows:

® Resource Manager: It is responsible to keep all the information of
each resource in cloud, e.g., allocation and release of resources for
service provision, avoid resource over provisioning in faulty con-
ditions, etc.

FTM Kernel: It is the central component of the architecture and it
consists of three sub-components: (a) Service Directory whose func-
tion is to register all the fault tolerance techniques provided by the
FTaaS provider. (b) Composition Engine- As per the user’s require-
ment, an ordered set of fault tolerance services is provided by the
service directory, the composition engine generates the optimal so-
lution form the set. (c) Evaluation Unit- It continuously validates the
fault tolerance solution generated by the composition engine using
the protocols corresponding to that solution and does necessary
updating if required.

Client Interface: It provides the users with an interface to the fault
tolerance service provider so as to put up their respective require-
ments.

Messaging Monitor: It consists of four sub-components: (a)
Replication Manager- It invokes and manages the execution of re-
plication resources and supervises them to ensure successful op-
eration. (b) Fault Detection/Prediction Manager- It is responsible to
detect faults in the operational replicas as well as in other resources
of the cloud by applying an optimal fault detection algorithm. (c)
Fault Masking Manager- It masks the occurrence of faults so as to hide
them from the users and give them a perception of a failure free
operation. (d) Recovery Manager- The function of this component is
the maintenance and repairing of faulty nodes in the cloud.

Apart from FTM, there are several other frameworks which provide
FTaaS, for example [73].

Key Features: The FTM framework works independent of the pro-
vider and is applicable to all crash faults.

Limitations: The fault tolerance overhead in relatively high.

4.2.9. FWSS

Poola et al. [74] proposed a fault tolerant algorithm to schedule
workflows in cloud. They used the concept of spot and on-demand in-
stances. Spot instance is defined as the idle or unused datacenter ca-
pacity. The fault tolerant action of the algorithm takes place to handle
premature termination of the spot instances and to handle the perfor-
mance variations of the cloud resources. Workflows are represented by
directed acyclic graphs (DAG) and each node in a DAG represents a

164

Computers in Industry 99 (2018) 156-172

task. In order to schedule a task, the slack time (difference between
deadline and critical path time) is calculated first. The task is then
scheduled on a spot instance. At the occurrence of any fault, the slack
time decreases. In such case the algorithm adaptively shifts the ex-
ecution of the task to an on-demand instance. Spot instances are used in
order to improve the resource utilization. To minimize the cost of ex-
ecution in consequence of a fault, the check-pointing strategy (at a user
defined frequency) is used. The FWSS workflow engine consists of five
modules, viz. dispatcher, fault tolerance, resource allocation, runtime es-
timation, and failure estimation. Dispatcher analyses the data de-
pendencies between the tasks and submits them to the scheduler.
Check-pointing of the running tasks is carried in the fault tolerance
module. The resource allocation module allocates suitable resources to
the tasks. The runtime of a workflow task is estimated in the runtime
estimation module using Downey’s Analytical Model [74]. The failure
probabilities of the spot instances are calculated in the failure estima-
tion module.

The algorithm is evaluated on CloudSim toolkit [57] to obtain ex-
ecution cost and number of failures w.r.t deadline time.

Key Features: FWSS maintains high resource utilization and task
completion rate. Moreover; it is specifically suitable for parametric,
resource contention, stochastic, and participant faults.

Limitations: FWSS is not applicable to all cloud environments as spot
instancing is not a general cloud feature.

4.2.10. MVRS

Zhao et al. [75] proposed a multi-level replication using different
types of VM clones, viz. full clones, decoy clones, and honeypot clones for
fault tolerance as well as security of mission-critical applications from
malicious attacks in cloud computing. Full clones contain the en-
vironment to execute the mission-critical applications. To tolerate by-
zantine faults, voting algorithm is applied over the obtained results. On
the other hand, for crash fault tolerance, full clones are synchronized
with each other. Moreover, the execution states are periodically check-
pointed so as to maintain the synchronization in case a failed clone is
regenerated. Decoy clones are installed with such software that could
mimic the behavior of full clones and give an illusion to the attackers
that the applications are being executed over them. Doing this diverts
the attackers and saves the full clones. The idea of decoy clones is
drawn from the chaff cloud (made of cheap material) spread by military
aircraft. Honeypot clones contain the sanitized copy of the application
and are generated with the intention that the attackers could interact
with them so that their behaviors could be monitored.

The prototypes of the proposed framework are implemented and
preliminarily tested on OpenStack based private cloud and Amazon EC2
based public cloud for the proof of proposed concept. One thing to be
noted is that the number of each type of clone instances is given by the
user rather than by the system.

Key Features: MVRS supports mission critical computing and guar-
antees application security. Therefore, it is suitable for real time ap-
plications.

Limitations: The main disadvantage of MVRS is its high execution
overhead.

4.2.11. k-out-of-n FT framework

Chen et al [76] proposed an energy-efficient and fault tolerant
framework for data storage and processing in dynamic clouds. They
integrated the k-out-of-n mechanism [77] from distributed computing
into cloud computing. Two functions are developed to store and process
data, namely AllocateData() and ProcessData() respectively. The meth-
odology first separates the storage requests and processing requests and
passes them to their respective functions. The probability of operation
failure is then estimated, on the basis of which the expected transmis-
sion time is computed. After that, the k-out-of-n mechanism is applied
and the resources are finally allocated. Considering the scope of this
paper, only fault tolerance features of the framework are described

M. Hasan, M.S. Goraya

here.

The framework consists of five basic components: (a) Topology
Discovery and Monitoring- As the work targets dynamic clouds, there-
fore, this component discovers the current topology of the ad-hoc net-
work so as to locate the resources. (b) Failure Probability Estimation- The
failure probability of a node is estimated on the basis of energy depletion,
temporary disconnection, and application-dependent factors. (c) Expected
Transmission Time Computation- It generates a matrix representing the
communication cost between any two nodes in the network. (d) k-out-
of-n Allocation- Data is partitioned into n fragments using erasure code
algorithm [78] and stored in the network such that retrieving k frag-
ments would consume minimum energy. (e) k-out-of-n Processing- It
creates a job consisting of m tasks and schedules them on n processing
nodes such that energy consumption would be minimized. To under-
stand the k-out-of-n mechanism, see Fig. 4.

Consider a resource set R = {Ry, Ry, Ro} consisting of 10
resources. Suppose, X = {R;, Ry, Rs, Rg, Ro} is a set of n = 5 allocated
resources with k = 3. Let the arrived job J = (T;, T,, T3) is partitioned
into three tasks. Now, the three tasks are so replicated on five allocated
resources that each subset of X would have at least one instance of each
task. Hence, until at least 3-out-of-5 resources work correctly, the ex-
ecution would go uninterrupted. The framework is simulated by ran-
domly deploying 45 mobile nodes over a network of 400 x 400 m?,

Key Features: The key features of k-out-of-n framework is its energy
efficiency and the capability to tolerate network faults.

Limitations: It’s resource utilization is considerably low.

4.2.12. FESTAL

Wang et al. [79] presented a fault tolerant scheduling mechanism
for real-time tasks in virtualized clouds. They utilized the primary
backup technique for fault tolerance. In the proposed mechanism the
users’ tasks are queued in an input buffer and then transferred to the
scheduler, which has three basic components viz. resource controller,
backup copy controller, and real-time controller. At the arrival of a task,
backup copy controller produces its backup. The resource controller then
searches for two virtual resources in different hosts those can complete
the task before its deadline. If resources are not found, task is rejected.
Else, both instances of the task are scheduled on the respective re-
sources. The authors used both active and passive backup schemes
adaptively as per the following conditions:

o If expected completion time of the task is lesser than or equal to the
task deadline, then passive backup is used.

o If expected completion time of the task is greater than the task
deadline, then active backup is used.

Moreover, the authors also introduced the concept of backup-backup
overlapping (BB Overlapping), which states that the backups of two tasks
(t; and t;) could overlap with each other on the same virtual machine if

()=

Computers in Industry 99 (2018) 156-172

their primaries are on different virtual machines. However, it will only
happen with the following conditions:

If host machine of both the tasks is same, they can’t be overlapped,
regardless of whether their virtual machines are same or different.
If the backup of t; is passive and that of ¢; is active, they can’t be
overlapped.

If the backups of both the tasks are active, they can’t be overlapped.
If the backup of t; is active, then the backup of t; can be overlapped if
and only if the backup of t; is passive earliest starting time of backup
of t; is greater than or equal to the addition of expected completion
time of primary of t; and the cancellation time of backup of t;.

FESTAL is evaluated through simulation experiments using
CloudSim toolkit [57] over randomly generated workloads as well as
over Google cloud tracelogs.

Key Features: Energy efficiency and high resource utilization are the
prime attractions of the FESTAL framework.

Limitations: Execution of tasks will fail if both primary and backup
fail simultaneously.

4.2.13. CACS

Cao et al. [73] proposed a service framework for check-pointing the
applications in heterogeneous cloud environments. They employed the
readymade Distributed Multi-Threaded Check-pointing (DMTCP)
package [80] into CACS. DMTCP associates a unique coordinator with
each running application, which is responsible for managing the check-
pointing of various processes of the application by directly commu-
nicating with the DMTCP daemons running on the nodes hosting the
application processes.

CACS consists of seven basic working modules: (a) User API provides
the users with the right to manage their own applications; (b)
Coordinators Database stores the information regarding all the applica-
tions; (c) Application Manager supervises application orchestration in-
cluding failure recovery mechanisms; (d) Cloud Manager interacts with
cloud infrastructure to manage virtual clusters; (e) Provision Manager
configures the virtual clusters; (f) Checkpoint Manager manages the
check-pointing images of the applications; and (g) Monitoring Manager
is responsible for the detection of possible failures in the application
processes.

CACS supports three modes of check-pointing: (a) User Initiated
Check-pointing- In this mode, the users themselves request the corre-
sponding check-pointing manager to checkpoint their respective run-
ning applications; (b) Periodic Check-pointing- The running application is
check-pointed after a specific period of time; and (c) Application Initiated
Check-pointing- The running application is check-pointed at the com-
pletion of each iteration. In case of fault detection, CACS enables any of
the following three recovery mechanisms: (a) Application Restarting- the
application is restarted since its latest check-pointed state; (b)

I —

?E

T2 Ts
T1 T2 T2

Fig. 4. k-out-of-n mechanism [76].

165

M. Hasan, M.S. Goraya

Application Cloning- A duplicate copy of the original application is cre-
ated and started from the latest check-pointed state of the original
application; and (c) Application Migration- The application is terminated
at the source cloud and migrated to another cloud.

The performance of CACS is evaluated by conducting experiments
on Snooze testbed, OpenStack, and Grid 5K testbed.

Key Features: The CACS framework supports cloud migration.

Limitations: CACS does not have any overhead optimization me-
chanism.

4.2.14. IRW

Yao et al. [26] proposed an algorithm to reschedule the failed tasks
in a workflow being executed in a cloud system. The algorithm is in-
spired from the immune system of a living being in the context of its
fighting capabilities against various diseases. The working architecture
of IRW has four modules: (a) Surveillance Unit, which is installed in each
host and is responsible to detect the faulty VMs in the respective host
using heartbeat protocol. If a faulty VM is detected, the (b) Response
Unit is triggered, which searches the (c) Memory Unit, which contains a
number of rescheduling strategies. The strategy which is the closest
match to the occurred fault is then selected. If no match is found, the (d)
Learning Unit is triggered, which first searches for a suitable VM in the
closest (squared Euclidean distance) cluster. If a suitable VM is found,
failed task is rescheduled on it and this VM is updated in the memory
unit. If no VM is found, a new VM is created on an active host which
meets the requirement of new VM, failed task is rescheduled on it, and
the memory unit is updated. If no active host meets the requirement, a
host in sleep mode is turned on to create a new VM in order to re-
schedule the failed task, and the memory unit is updated. The perfor-
mance of IRW algorithm is evaluated through simulation on four real
world workflows, viz. Montage, Epigenomics, CyberShake, and Inspiral as
well on a few randomly generated workflows.

Key Features: IRW promises high task completion rate and low ma-
kespan delay.

Limitations: IRW is not suitable for hard deadline applications.

4.2.15. SAFTP

Chen and Jiang [41] proposed an adaptive fault tolerant strategy for
cloud application, named as SelfAdaptionFTPlace. The proposed
strategy works in two phases. In the first phase, different fault tolerance
methods are sorted as per the user’s provided constraints. Four fault
tolerance methods are considered in the work viz. retry, recovery block,
N-version programming, and active. Three user provided constraints are
considered viz. response time, failure rate, and resource consumption. The
best fault tolerance method is then chosen in the context of user pro-
vided constraint. In the second phase the virtual machines are placed as
per the selected method. Different modules of the SAFTP prototype
implementation are described as follows:

e Application requirement initialization: Users’ applications in cloud
are initialized corresponding to the respective users’ constron: Users’
applications in cloud are initialized corresponding to the respective
usersaints.

e Fault tolerance strategy selection: Fault tolerance methods are
sorted and best method is selected as per the user’s constraints.

® VM placement model transformation: Virtual machines assigned to
the application are then placed according to the selected fault tol-
erance method.

Key Features: SAFTP is an adaptive framework which allows users’
interaction for fault tolerance.
Limitations: Not suitable for inexperienced users.

4.2.16. SAFTP
Ding et al. [81] proposed a fault tolerant workflow scheduling al-
gorithm using primary-backup and job-migration methods. The cloud

166

Computers in Industry 99 (2018) 156-172

architecture and the execution flow of each task in the workflows are
similar to those in FESTAL [79]. Each workflow is considered as a DAG,
where the vertices represent the tasks and the edges represent the de-
pendencies between the tasks. Instead of considering a single deadline
for a complete workflow, the authors divide the workflow deadline into
tasks’ deadlines depending upon the number of tasks and the size of
each task. Each task ¢; in the workflow has two copies viz. primary (t))
and backup (i t}g). If the primary fails, execution continues at the backup.
However, there are certain cases to create the backup of a task, which
are

o t? cannot be placed on the host where ¢ is placed.

o ¢? cannot be placed on the hosts where the predecessors of & are
placed.

o ¢? cannot start execution until all the backups of direct predecessors
of t; finishes and transferred their data to tJB

Furthermore, if the backup of a task (tf) fails, it is migrated to some
other host, but not to any of the hosts where the predecessors of t; are
placed. The performance of FTESW algorithm is evaluated through si-
mulation on four real world workflows, viz. Montage, Epigenomics,
CyberShake, and Inspiral as well as on a few randomly generated
workflows similar to IRW [26].

Key Features: The FTESW framework offers high resource utilization.

Limitations: Workflow execution will interrupt if both primary and
backup fail simultaneously.

Apart from the above proactive and reactive frameworks, Amoon
[82] presented a hybrid fault tolerance framework HFFC in cloud
computing. The framework is called hybrid as it uses both proactive and
reactive approaches. The main component of the framework is the al-
locator which contains three modules, viz. QoS controller, VMs database,
and broker. QoS controller receives user’s request along with QoS re-
quirements and queries the VMs database whether suitable VMs could
be available or not. The VMs database (which contains all the in-
formation about VMs in cloud) replies the QoS controller. If suitable
VM are available, QoS controller accepts the user request and passes it
to the broker. If no suitable VM is available, request is rejected. Broker
is the most important module which further contains three sub-mod-
ules, viz. VMFT (virtual machine fault tolerance) selection, VMs classifier,
and dispatcher. The VMFT selection module uses the Fault Tolerance
Strategy Selection (FTSS) algorithm to select the most suitable fault
tolerance strategy for the user’s request. The VMs classifier uses Virtual
Machine Classification (VMC) algorithm to classify the resources with
can fulfill the user’s request. The FTSS and VMC algorithms are ex-
plained later in this section. The dispatcher module finally dispatches
the selected VMs to execute the request. The FTSS algorithm takes ap-
plication cost and deadline time as the input from the customer. Then for
each VM, it calculates the estimated cost and time if the application
would be executed on it and shortlists m most valuable VMs in the cloud
using VMC algorithm. For each VM in the m list, it is computed whether
it could execute the application within the application cost and dead-
line time. If no VM is found, application is discarded. If more than one
VMs are found, replication strategy is used; else, check-pointing
strategy is used. The VMC algorithm classifies the VMs according to the
time for which they have been used and their failure probabilities. The
failure probability of a VM is obtained using Poisson distribution. The
value of a VM is calculated in terms of a selection parameter, which is
equal to the product of its usage time and failure probability. The more
the value of selection parameter, the more valuable is the VM.

Amoon [83] proposed another fault tolerance framework for cloud
environment. The framework is adaptive as it implements either re-
plication or checkpoint-restart methods according to the users’ requests
and VMs status. The system model of AFRCE is similar to that of HFFC.
Similar to FTSS algorithm in HFFC, it implements a Selecting Fault
Tolerance (SFT) algorithm, which selects either replication or check-
point-restart. According to SFT algorithm, if the number of VMs which

M. Hasan, M.S. Goraya

can carry out the request is more than 1, replication is selected. Else,
checkpoint-restart is selected. In case of replication, AFRCE targets the
challenge of adjusting the number of replicas by calculating the values
of VMs. The value of a VM is a function of its failure probability and the
profit of its use. On the other hand, if checkpoint-restart is selected,
AFRCE targets the challenge of adjusting the checkpoint frequency. The
checkpoint frequency is also adjusted with respect to the failure prob-
ability. The framework is evaluated using CloudSim simulator [57] in
terms of throughput, availability, time overhead, and monetary waste
overhead.

5. Discussion

In the survey, we observe how much a particular fault category is
focused upon and how much a particular fault tolerance method is
utilized in the existing research. Estimation is drawn in from more than
40 frameworks included in the prominent surveys already published in
literature [17-19,16,20,84,21] along with the frameworks discussed in
the present survey. Fig. 5 gives the applicability graphs of fault toler-
ance methods, showing the prevalence of reactive approaches (with
86% applicability) over proactive approaches.

It is conclusive that the proactive methods need consistent mon-
itoring of the system. They highly rely on learning and prediction using
probability theory and artificial intelligence. The tasks executed under
proactive fault tolerance remain uninterrupted until the system behaves
according to the probability of the system’s future state. However, in
case of any deviation in system behavior or any inaccurate prediction,
these methods become ineffective. It may result in severe consequences,
and might lead the system to unworkable state. For example; ASSURE
[44] and SHelp [43] are confined to tolerate software faults, while
FTDG [54] can tolerate parametric faults only. In case any other fault
type occurs, they would not be able to predict accurately might become
ineffective. The applicability of WSRC [37] is confined to infrastructure
layer only and the fault occurred in the above layers cannot be pre-
dicted. Moreover, the overhead of monitoring the system consistently
or even periodically is also a considerable factor. In preemptive migra-
tion, the total fault tolerance overhead includes system monitoring as
well as task migration from the faulty predicted node. In system re-
juvenation, the periodic backup of the system causes considerable sto-
rage overhead. However, as discussed in section 3, backing-up period
can be varied as is done in [37,53] so that overhead could be controlled.
Now, in case of self-healing method, if a condition (which has never
been experienced by the system before) occurs, it will be required to
develop and deploy new recovery procedures.

On the other hand, reactive approaches are mostly represented by
replication method (36% applicability), while checkpoint restart (29%

@

—_ — [*) N
(= W (=3 w
L I L]

No. of frameworks applying
wn

Fault tolerance methods

Computers in Industry 99 (2018) 156-172

applicability) and job migration (21% applicability) generally work as
auxiliaries. [83] also suggests that replication is the method used by
most of the current cloud systems. Replication method takes the ad-
vantage of high resource availability in cloud, but it consumes a lot of
resources and contributes towards the total execution cost. If the fault
tolerance is adaptive (e.g. HHFC, AFRCE, etc.) [82] or uses multiple
methods (e.g. FTM) [72], the execution cost climbs higher. To avoid the
resource wastage and to utilize the execution cost in replication, passive
replication was introduced. Authors in [85,2,86] suggest that the backup
resources in passive replication could be utilized by executing low
priority secondary tasks on them. Another issue with replication is to
calculate optimal group size. Many researchers calculated the replica-
tion group size on the basis of various resources’ parameters, e.g. re-
liability, trust and reputation, failure rate, etc. For inclusion in this paper;
[85,2,86] calculate the group size w.r.t resource reliability, Zhang et al.
[61] calculate w.r.t QoS of the resources, Zheng et al. [64] calculate
w.r.t invocation frequency and characteristics of resources, [87] cal-
culates w.r.t failure rates of the resources. Besides this, [88] state that a
high degree of fault tolerance could be achieved if a data item is re-
plicated across three servers, provided that failures of those servers are
mutually independent. Similar to that, [89] propose limited duplication
for dependent tasks’ scheduling. In addition, [55] also obtained the
results using three replicas. FESTAL [79] and FTESW [81] introduced
the concept of backup overlapping to avoid resource wastage in re-
plication. The case with checkpoint restart is very much similar to system
rejuvenation in the sense that the overhead can be optimized by varying
the checkpoint interval as done by the authors in [11,71]. Moreover,
shadowing is another technique to optimize the overhead as done in
[58].

Furthermore, Fig. 6 shows how much a particular fault category
(crash or byzantine) is targeted in the literature.

It can be noticed that 43% frameworks target crash faults, 26%
target byzantine faults, while 31% target both. It shows that researchers
are slightly more motivated towards crash fault tolerance. It may be due
to the reason that the detection and tolerance of crash faults seems
easier to simulate in comparison to those of byzantine faults. However,
there may be other reasons as well. A comparative analysis of the fra-
meworks surveyed in section 4 is given in Table 3.

6. Research directions

Cloud computing is a major attraction in industry, commerce,
education, and IT professionals. Over the years its user base has con-
sistently widened. To meet the cloud service requirements of the vast
user base, numerous cloud service providers have appeared. Every day
millions of tasks are emerging for execution in the cloud environment

(b)

5%

m Self-Healing u Preemptive Migration
m System Rejuvenation B Checkpoint Restart
= Job Migration Replication

Fig. 5. (a) Applicability count and (b) Applicability percentage of fault tolerance methods.

167

M. Hasan, M.S. Goraya

(a) 20
18 -
16 A
14 -

12 -
10 -
3 -
6.
4
5 |
0 - . .

Crash fault Byzantine fault
Fault types

No. of frameworks targetting

Computers in Industry 99 (2018) 156-172

(®)

B Crash fault Byzantine fault HBoth

Fig. 6. (a) No. of frameworks and (b) Percentage of frameworks targeting different fault types.

[90]. For instance, 25 million tasks were submitted to Google cloud in
the span of 29days [79]. Service reliability is one of the primary
characteristic of cloud computing and therefore it successfully achieves
a remarkable service completion rate. Wang et al. [79] and Ding et al.
[81] claimed to achieve about 95% task completion rate on the real-
world workload. However, 5% task failure rate results in the failure of
thousands of tasks, which cannot be ignored. Therefore, highly efficient
fault tolerance frameworks are required to minimize the task failure
rate.

Though reactive fault tolerance methods are prevalent among re-
searchers till now but due to the ongoing advancements in machine
learning, the devices are becoming smarter and artificially intelligent
which is increasing the scope of research in proactive fault tolerance
methods (specifically self-healing). Overhead optimization is further one
of the open research area in cloud computing. It can considerably en-
hance the applicability of proactive methods among both researchers as
well as professionals. Applications in cloud demand high serviceability
and reliability. Therefore, it is difficult to design a fault tolerance fra-
mework (using a particular fault tolerance method), which is both
highly reliable and optimal. However, by combining two or more fault
tolerance methods to form a hybrid fault tolerance framework may
solve the problem. Certain frameworks (both proactive and reactive) in
the literature applied checkpoint restart as the auxiliary method to in-
voke fault tolerance. However, it has been observed that preemptive
migration could also be a suitable option to be applied as auxiliary.
Replication is generally used for storage applications to achieve zero
downtime. For computational applications, passive replication is ac-
companied by checkpoint restart to reduce the computational downtime,
but practically it is almost impossible to achieve zero computational
downtime using checkpoint restart. However, using preemptive migration
instead of checkpoint restart along with passive replication may do the
job.

Furthermore, the existing frameworks counter only a few fault types
and to the best of our knowledge no framework has claimed to be en-
ough fault tolerant to handle each fault type. From the research per-
spective, again due to the advancements in machine learning, novel
fault tolerance frameworks (smart enough to apply different strategies
at different situations) are expected to counter all different fault types.
In addition, the existing fault tolerance techniques proposed in litera-
ture are broadly service provider centric. The consumer is provided
with the readymade fault tolerance mechanisms implemented at the
service provider end. Cloud is a pay-per-use service infrastructure
where the customers pay only for the service(s) they use. At the time,
when a customer can select the required service from cloud under the
pay-per-use service model, he/she should also be provided the flex-
ibility to decide the service level guarantee in terms of fault tolerance.

168

Therefore, a mechanism of service orchestration in cloud which in-
cludes service selection as well as price oriented flexible fault tolerance
is needed.

Fault tolerance is a combined action of fault forecasting and fault
prevention (proactive) or fault detection and fault recovery (reactive).
Most of the frameworks proposed in literature focus on the second as-
pect i.e., fault prevention and fault recovery. Commercially, cloud da-
tacenters contain thousands of physical hosts with different reliabilities
[91,10]. It shows how complex it is to forecast/detect faults and failures
in such a gigantic network. Hence, frameworks capable of providing
complete fault tolerance (forecast/detection + prevention/recovery)
would be highly appreciated.

In the present IT systems, fault tolerance provisioning generally
focuses on the hardware infrastructure. It means that the hardware
infrastructure is more susceptible to faults than the software infra-
structure. Unbalanced workload distribution may be a vital reason for
this, which causes hosts’ overloading and consequently their failure. In
this regard, fault tolerance can be achieved through efficient workload
distribution using clustering [92,93] and load balancing [94]; [95].
Clustering is a technique to form the groups of similar objects. In a
distributed network, clusters of tasks and resources can be formed to
perform efficient task-resource mapping. Abdulhamid et al. [92] pro-
posed clustering-based fault tolerance scheduling algorithm for auton-
omous tasks in cloud. Chen et al. [93] proposed three task clustering
algorithms in workflows to provide fault tolerance. On the other hand,
load balancing in cloud has also been an issue of attraction among re-
searchers due to its far reaching consequences in the resource usage
optimization [96] and energy-efficiency [97]. As already discussed,
overloading causes hosts’ failure, therefore load balancing can have
great application in fault tolerance as well. Idris et al [94] proposed a
fault tolerance algorithm for job scheduling in grid computing en-
vironment. Fault tolerance is implemented through load balancing
using ant colony optimization. For cloud environment, Moghtadaeipour
and Tavoli [95] proposed a load balancing architecture using fuzzy
logic for energy optimization as well as fault tolerance. A limited re-
search is attributed to the application of load balancing in fault toler-
ance in cloud and needed further explorations. Based on the above
discussion, following probable areas are recommended for future re-
search:

e Towards the improvement of task completion rate in cloud.

e Overhead optimization of proactive fault tolerance methods.

® Provision of hybrid fault tolerance in cloud.

e Application of preemptive migration as auxiliary fault tolerance
method.

® Provision of fault tolerance to counter each fault type in cloud.

Computers in Industry 99 (2018) 156-172

A[snoauelnurs
1rey dnyoeq x Areurtid j1 sjqesrddeut uoneZINN 32In0sa1 Y3IH saIn[rej 104 uonedrjdas ‘uoneidiw qor ARy MSILI
Anqeosridde ey pajrury awn asuodsar moT s)ney dInaweIed uoneidiu aandws-a1d QATIdROI] oaLd
uonedrjdax
uoneuaWLIRdXa pajrury PEaYI2A0 JUTOdYdYd MO S)[NBJ 9IBMIJOS PUE SIIN[IE] ISOH 9re3saz jurodydsyD QATIIRYY SAAIL
uoneuWLIRdXa Pajrur] aandepy s)[nej 2I1eM1JOS uonedrdey aATIdRYY dLAVS
suonedrjdde sur[peap piey J1oj 3[qelms JON 9rex uonardwrod ysel Yy ‘uedsayewr mo SaYSEId INA Burmpayosa1 qor aATIdRYY MYI
uonedrjdax
mndy8noIyy mot aandepy S)[neJ [eIoUdD 9xe3saz JurodydsyD QATIIRYY AUV
uonedridax
Buruonouny mo[s [eS1wou0dy S)[NeJ JUTRIISUOD pUe uonemnsyuo) 91e)sa1 JurodydayD PLIqAH D4AH
uonerdrur
uoneziundo pesayisro oN uoneidrur pnopd syroddng suonjedridde Ayiresyun ‘sayserd WA qol ‘reysar yurodydayn QATOBY SOVD
SINA Yuapuadapur
PpaIapisuod sydadse ainjrey payiwir] Jo suoneusanfor apdnnuw suoddns ‘Arpiqerreae y3iy saysen pue 3urde aremijos uoneudAn[ar walsks QATIdROI] SIS
A[snoaueynuis
rey dnyoeq 3 Arewrnid j1 ajqeodrjddeut uoneZININ 321n0saI YSIH saIn[rej S04 uonedrdoy AATIORY TVILSTA
UONEZI[NN 3DIN0SAI MO Juapyge A31ouy S)[NEJ }IOMISU pUB dIBMPIEH uonedrdey QATdRIY U-Jo-Jno-y
syoene uoneojdal
peayiano Y3y Bunndwod [eonid uvoisstw syroddns Qmoag SNOMI[eW ‘S)[NeJ dUNUezAq pUue YSeId [BISUID 9ae)sar jurodyoayn AATIORY SYAIN
s)nej Juedpnred uonerdrur
Anqeosridde payrury uonezinn 321nosal Y puE O1ISEYD0]S ‘UOTIUSIUOD DIINO0SAI DLNdWeIed qof 91e3sa1 jurodydayd aATdRYY ssm4d
Auo 1ake] armdnnseur Je sjqedrddy peaytaao paziumdo ‘Aiiqerreae Y31y s)[Nej 2I1eM1JOS uoneusAn(or walsAS QAnDROI DUSM
uoneuauR[dur xa[dwod pue peayiaro Y3y 9DIAIDS B SB 90URII0) J[Ney s)ney ysern SPOYIRW DATIIEI [V aATIdRYY WL
uoneIdrur
sad£) 1ney pajruiy 9)eIdo], 150D UOTINDIXD MO] “ISBy S)[NEJ UOTIUSIUOD 3DINOSIY qof 9xe3sa1 JurodydayD aATIdRYY SVINVD
uonejuaw[durr xajduo) Ademdoe 210N S)[nej 2I1eM)jos uonedrdoy AATIORY ZPNoDIA
UONBZI[NN 3DINO0SAI MO Aniqerpar Y8t s)[nej aI1emijos uonedrdey 2ANOBY IPNoDILA
Ppaseq-walsAs s1 ssouaandepy peay1aao paziumndo ‘aandepy s)nej ysein 1183531 Jutodydayn QA1BIY 14va
MOTS 9q ABW UOTIOR SDUBIS[O] I[Ne uonezInn 32mMosaI YSTH UOTIUSIUOD IDINOSIY uonedrdar ‘uoneidiur qor aATIdRYY AISVV
uonejuawa[durr xajduo) XH:d Uey) 1502 UONNIIXKD J9MOT s)nej arempieH uoneidiw aandureard ATIdROIJ DHAd
1500 uoNNIIXa Y3IH uonerdrur aa1] syroddng s)[nej arempIreH uonesdrur aanduwaaig QA1ROI XHAd
UOTIEZI[TIN 3DINO0SII MO Anniqera1 yStH syneyq aunuezAg uonesrdey aATIdRYY pnopIAg
ndd0 Aew uoneyudwWder Bumoysdeus [eJUSUIAIIUT JATT s)nej arempieH 11e3891 JutodyoRyD aAedy (€£10%) WDgold
suonedridde pajdnod A[asoo] 10j ajqedrjddeug PEaYI2A0 93RI01S MO sinej arempiey 11e3891 JUtodydayD 2Andeay (1102) ¥Dqold
113591
uonejuswIadxa pajrury Annqeoridde swmn-ear ‘Ademdoy s)nej drnawered pue uonemsyuod Jutodypayd ‘uonedrdey AATIORY DUILIV
11e)S91
sad£) J[ney pajruiy 9)eIdo], PEIYISA0 JISSI] puE SUTUONOUNJ 19)se] s)[nej 2I1eM1JOS Jurodydayd ‘Surresy-jjas QA1ROI doHS
11e)S91
sowmn 18 Mo[s aq AR\ saSuBYD [2UIdY SO Seq INOYIM SYIOM s)[neJ 2I1eM1JOS Jutodydayd ‘Burreay-Jos QATIdROI] TINSSV
(eAn0BaY
sa3ejuRApESI(]/SUOTIRI W] sadejueApy/samiea Aoy orreuads uonedrddy Pasn (S)POYIRIN /aAanoeo1q) yoeoiddy orseq yIomaurer]

169

M. Hasan, M.S. Goraya

"PNOd U SYIOMIUWIEI) 3DUBIS0) J[NEJ JUSISYIP Jo uosLreduio)
€ dqeL

M. Hasan, M.S. Goraya

® Provision of fault tolerance through clustering and load balancing.
e Towards price flexible fault tolerance in cloud.
® Provision of efficient fault forecasting and detection mechanisms.

7. Conclusions

Fault tolerance has been one of the major issues in cloud computing
environments. Dynamic infrastructure and complex configuration are
among the key reasons. In this paper, different fault types (along with
their causes) and various fault tolerance approaches in cloud computing
have been discussed in a systematic manner. Eminent fault tolerance
frameworks have also been surveyed in terms of their basic approach,
fault applicability and key features. Following conclusions have been
made:

® Researchers are more motivated towards addressing crash faults
rather than byzantine faults.

e Reactive fault tolerance methods are more often applied rather than
proactive ones.

e Higher overheads and complex implementations are observed as the
core reasons behind the reluctance of researchers towards proactive
approaches.

® Replication is the most applied fault tolerance technique followed
by checkpoint restart and job migration respectively.

e In many frameworks, checkpoint restart and job migration are used
as auxiliary techniques with replication.

The paper includes a comparative analysis of different fault toler-
ance frameworks which will facilitate the researchers to select the
framework of their interest. For example, a researcher wants to work
upon reactive methods using replication may look through AFTRC,
BFTCloud, FTM, k-out-of-n, and FESTAL etc. Furthermore, if one needs
to look upon the frameworks dealing with resource contention faults,
he/she may opt for AASIF and CAMAS. In addition, the survey also
enlists various challenges regarding the implementation of fault toler-
ance in cloud and shows the possible future directions for research in
this context.

Acknowledgements

This research work is supported by Sant Longowal Institute of
Engineering and Technology, Sangrur, India under research fellowship
scheme.

We are thankful to the journal editor and anonymous reviewers for
their valuable comments to finalize the survey.

References

[1] P. Mell, T. Grance, The NIST definition of cloud computing [WWW document],
Natl. Inst. Stand. Technol. (2011) URL http://nvlpubs.nist.gov/nistpubs/Legacy/
SP/nistspecialpublication800-145.pdf (Accessed 9 January 2016).

M. Hasan, M.S. Goraya, Priority based cooperative computing in cloud using task
backfilling, Lect. Notes Softw. Eng. 4 (2016) 229-233, http://dx.doi.org/10.18178/
Inse.2016.4.3.255.

G.A. Lewis, Role of standards in cloud-computing interoperability, Proceedings of
the Annual Hawaii International Conference on System Sciences (2013) 1652-1661,
http://dx.doi.org/10.1109/HICSS.2013.470.

RightScale, State of the Cloud Report [WWW Document], RightScale, 2016 URL
http://assets.rightscale.com/uploads/pdfs/RightScale-2016-State-of-the-Cloud-
Report.pdf (Accessed 11 February 2016).

B. Kazarian, D. Baron, B. Hanlon, R. Tully, J. Fjeldal, SMB Cloud Adoption Study
[WWW Document]. Edge Strateg, (2012) URL http://www.edgestrategies.com/
component/k2/item/117-just-released-2012-microsoft-edge-technologies-smb-
cloud-adoption-study.html (Accessed 11 February 2016).

M. Tebaa, S. El Hajji, From single to multi-clouds computing privacy and fault
tolerance, Proceedings International Conference on Future Information Engineering
(2014) 112-118, http://dx.doi.org/10.1016/j.ieri.2014.09.099 (Elsevier B.V.).

A. Abid, M.T. Khemakhem, S. Marzouk, M. Ben Jemaa, T. Monteil, K. Drira, Toward
antifragile cloud computing infrastructures, Procedia Comput. Sci. 32 (2014)
850-855, http://dx.doi.org/10.1016/j.procs.2014.05.501.

G. Fagg, J. Dongarra, FT-MPI: Fault tolerant MPI, supporting dynamic applications

[2]

[3]

[4]

[5]

(6]

[71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]

[37]

Computers in Industry 99 (2018) 156-172

in a dynamic world, Recent Advances in Parallel Virtual Machine and Message
Passing Interface, (2000), pp. 1-8, http://dx.doi.org/10.1007/3-540-45255-9 47.
X. Lin, A. Mamat, Y. Lu, J. Deogun, S. Goddard, Real-time scheduling of divisible
loads in cluster computing environments, J. Parallel Distrib. Comput. 70 (2010)
296-308, http://dx.doi.org/10.1016/j.jpdc.2009.11.009.

R. Jhawar, V. Piuri, Fault tolerance and resilience in cloud computing environ-
ments, in: J. Vacca (Ed.), Computer and Informaion Security Handbook, 2013, pp.
1-29, , http://dx.doi.org/10.1109/CLOUD.2011.16.

D. Sun, G. Chang, C. Miao, X. Wang, Modelling and evaluating a high serviceability
fault tolerance strategy in cloud computing environments, Int. J. Secur. Netw. 7
(2012) 196-210, http://dx.doi.org/10.1504/1JSN.2012.053458.

A. Tchernykh, U. Schwiegelsohn, V. Alexandrov, E. Talbi, Towards understanding
uncertainty in cloud computing resource provisioning, Proceedings Internatinal
Conference on Computational Science (2015) 1772-1781, http://dx.doi.org/10.
1016/j.procs.2015.05.387.

T. Wang, W. Zhang, C. Ye, J. Wei, H. Zhong, T. Huang, FD4C: automatic fault di-
agnosis framework for web applications in cloud computing, IEEE Trans. Syst. Man
Cybern. Syst. 46 (2016) 61-75, http://dx.doi.org/10.1109/TSMC.2015.2430834.
W. Ahmed, Y.W. Wu, A survey on reliability in distributed systems, J. Comput. Syst.
Sci. 79 (2013) 1243-1255, http://dx.doi.org/10.1016/j.jcss.2013.02.006.

S. Hernandez, J. Fabra, P. Alvarez, J. Ezpeleta, Using cloud-based resources to
improve availability and reliability in a scientific workflow execution framework,
The Fourth International Conference on Cloud Computing, GRIDs and
Virtualization (2013) 230-237.

M.N. Cheraghlou, A. Khadem-Zadeh, M. Haghparast, A survey of fault tolerance
architecture in cloud computing, J. Netw. Comput. Appl. 61 (2016) 81-92, http://
dx.doi.org/10.1016/j.jnca.2015.10.004.

H. Agarwal, A. Sharma, A comprehensive survey of fault tolerance techniques in
cloud Computing, 2015 Intl. Conference on Computing and Network
Communications (CoCoNet’15) (2015) 408-413, http://dx.doi.org/10.1109/
CoCoNet.2015.7411218.

Z. Amin, N. Sethi, H. Singh, Review on fault tolerance techniques in cloud com-
puting, Int. J. Comput. Appl. 116 (2015) 11-17.

S.M.A. Ataallah, S.M. Nassar, E.E. Hemayed, Fault tolerance in cloud computing —
Survey, 11th International Computer Engineering Conference (2015) 241-245.
L.P. Saikia, Y.L. Devi, Fault tolererance techniques and algorithms in cloud system,
Int. J. Comput. Sci. Commun. Netw. 4 (2014) 1-8.

A. Tchana, L. Broto, D. Hagimont, Fault tolerant approaches in cloud computing
infrastructures, The Eighth International Conference on Autonomic and
Autonomous Systems (2012) 42-48.

D. Oppenheimer, A. Ganapathi, D.A. Patterson, Why do internet services fail, and
what can be done about it? USENIX Symposium on Internet Technologies and
Systems (2003) 1-15.

M. Armbrust, I. Stoica, M. Zaharia, A. Fox, R. Griffith, A.D. Joseph, R. Katz,

A. Konwinski, G. Lee, D. Patterson, A. Rabkin, A view of cloud computing,
Commun. ACM 53 (2010) 50-58, http://dx.doi.org/10.1145/1721654.1721672.
M. Ali, S.U. Khan, A.V. Vasilakos, Security in cloud computing: opportunities and
challenges, Inf. Sci. (Ny) 305 (2015) 357-383, http://dx.doi.org/10.1016/j.ins.
2015.01.025.

J. Dong, Z. Decheng, L. Hongwei, Y. Xiaozong, DPHM: a fault detection protocol
based on heartbeat of multiple master-nodes, J. Electron. 24 (2007) 544-549,
http://dx.doi.org/10.1007/s11767-006-0122-5.

G. Yao, Y. Ding, L. Ren, K. Hao, L. Chen, An immune system-inspired rescheduling
algorithm for workflow in cloud systems, Knowl.-Based Syst. 99 (2016) 39-50,
http://dx.doi.org/10.1016/j.knosys.2016.01.037.

A. Bala, I. Chana, Fault tolerance- challenges, techniques and implementation in
cloud computing, Int. J. Comput. Sci. 9 (2012) 288-293.

W. Qiu, Z. Zheng, X. Wang, X. Yang, M.R. Lyu, Reliability-based design optimiza-
tion for cloud migration, IEEE Trans. Serv. Comput. 7 (2014) 223-236, http://dx.
doi.org/10.1109/TSC.2013.38.

T. Zaidi, Modeling for fault tolerance in cloud computing environment, J. Comput.
Sci. Appl. 4 (2016) 9-13, http://dx.doi.org/10.12691/jcsa-4-1-2.

C. Engelmann, G.R. Vallée, T. Naughton, S.L. Scott, Proactive fault tolerance using
preemptive migration, Proceedings of the 17th Euromicro International Conference
on Parallel, Distributed and Network-Based Processing, PDP 2009 (2009) 252-257,
http://dx.doi.org/10.1109/PDP.2009.31.

R. Salvador, A. Otero, J. Mora, E.D. Torre, L. La Sekanina, T. Riesgo, Fault tolerance
analysis and self-healing strategy of autonomous, evolvable hardware systems,
Proceedings International Conference on Reconfigurable Computing and FPGAs
(2011) 164-169, http://dx.doi.org/10.1109/ReConFig.2011.37.

D. Ghosh, R. Sharman, H. Raghav Rao, S. Upadhyaya, Self-healing systems — survey
and synthesis, Decis. Support Syst. 42 (2007) 2164-2185, http://dx.doi.org/10.
1016/j.dss.2006.06.011.

W. Haque, A. Aravind, B. Reddy, Pairwise sequence alignment algorithms — a
survey, Proceedings of the 2009 Conference on Information Science, Technology
and Application (2009) 96-103, http://dx.doi.org/10.1145/1551950.1551980.

H. Tu, Comparisons of self-healing fault-tolerant computing schemes, Proceedings
World Congress on Engineering and Computer Science (2010) 1-6.

T.-H. Lai, S. Sahni, Preemptive scheduling of a multiprocessor system with mem-
ories to minimize maximum lateness, SIAM J. Comput. 13 (1984) 690-704.

A. Polze, P. Troger, F. Salfner, Timely virtual machine migration for pro-active fault
tolerance, Proceedings 14th IEEE International Symposium on Object/Component/
Service-Oriented Real-Time Distributed Computing Workshops (2011) 234-243,
http://dx.doi.org/10.1109/ISORCW.2011.42.

D. Bruneo, S. Distefano, F. Longo, A. Puliafito, M. Scarpa, Workload-based software
rejuvenation in cloud systems, IEEE Trans. Comput. 62 (2013) 1072-1085, http://

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://dx.doi.org/10.18178/lnse.2016.4.3.255
http://dx.doi.org/10.18178/lnse.2016.4.3.255
http://dx.doi.org/10.1109/HICSS.2013.470
http://assets.rightscale.com/uploads/pdfs/RightScale-2016-State-of-the-Cloud-Report.pdf
http://assets.rightscale.com/uploads/pdfs/RightScale-2016-State-of-the-Cloud-Report.pdf
http://www.edgestrategies.com/component/k2/item/117-just-released-2012-microsoft-edge-technologies-smb-cloud-adoption-study.html
http://www.edgestrategies.com/component/k2/item/117-just-released-2012-microsoft-edge-technologies-smb-cloud-adoption-study.html
http://www.edgestrategies.com/component/k2/item/117-just-released-2012-microsoft-edge-technologies-smb-cloud-adoption-study.html
http://dx.doi.org/10.1016/j.ieri.2014.09.099
http://dx.doi.org/10.1016/j.procs.2014.05.501
http://dx.doi.org/10.1007/3-540-45255-9_47
http://dx.doi.org/10.1016/j.jpdc.2009.11.009
http://dx.doi.org/10.1109/CLOUD.2011.16
http://dx.doi.org/10.1504/IJSN.2012.053458
http://dx.doi.org/10.1016/j.procs.2015.05.387
http://dx.doi.org/10.1016/j.procs.2015.05.387
http://dx.doi.org/10.1109/TSMC.2015.2430834
http://dx.doi.org/10.1016/j.jcss.2013.02.006
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0075
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0075
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0075
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0075
http://dx.doi.org/10.1016/j.jnca.2015.10.004
http://dx.doi.org/10.1016/j.jnca.2015.10.004
http://dx.doi.org/10.1109/CoCoNet.2015.7411218
http://dx.doi.org/10.1109/CoCoNet.2015.7411218
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0090
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0090
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0095
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0095
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0100
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0100
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0105
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0105
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0105
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0110
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0110
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0110
http://dx.doi.org/10.1145/1721654.1721672
http://dx.doi.org/10.1016/j.ins.2015.01.025
http://dx.doi.org/10.1016/j.ins.2015.01.025
http://dx.doi.org/10.1007/s11767-006-0122-5
http://dx.doi.org/10.1016/j.knosys.2016.01.037
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0135
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0135
http://dx.doi.org/10.1109/TSC.2013.38
http://dx.doi.org/10.1109/TSC.2013.38
http://dx.doi.org/10.12691/jcsa-4-1-2
http://dx.doi.org/10.1109/PDP.2009.31
http://dx.doi.org/10.1109/ReConFig.2011.37
http://dx.doi.org/10.1016/j.dss.2006.06.011
http://dx.doi.org/10.1016/j.dss.2006.06.011
http://dx.doi.org/10.1145/1551950.1551980
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0170
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0170
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0175
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0175
http://dx.doi.org/10.1109/ISORCW.2011.42
http://dx.doi.org/10.1109/TC.2013.30

M. Hasan, M.S. Goraya

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

dx.doi.org/10.1109/TC.2013.30.

B. Nicolae, F. Cappello, BlobCR: virtual disk based checkpoint-restart for HPC ap-
plications on Iaa$S clouds, J. Parallel Distrib. Comput. 73 (2013) 698-711, http://
dx.doi.org/10.1016/j.jpdc.2013.01.013.

G. Bosilca, R. Delmas, J. Dongarra, J. Langou, Algorithm-based fault tolerance
applied to high performance computing, J. Parallel Distrib. Comput. 69 (2009)
410-416, http://dx.doi.org/10.1016/].jpdc.2008.12.002.

N. Naksinehaboon, M. Paun, R. Nassar, B. Leangsuksun, S. Scott, High performance
computing systems with various checkpointing schemes, Int. J. Comput. Commun.
Control 4 (2009) 386-400.

X. Chen, J. Jiang, A method of virtual machine placement for fault- tolerant cloud
applications, Intell. Autom. Soft Comput. (2016) 1-11, http://dx.doi.org/10.1080/
10798587.2016.1152775.

W. Zhao, P.M. Melliar-Smith, L.E. Moser, Fault tolerance middleware for cloud
computing, Proceedings IEEE 3rd International Conference on Cloud Computing
(2010) 67-74, http://dx.doi.org/10.1109/CLOUD.2010.26.

G. Chen, H. Jin, D. Zou, B.B. Zhou, W. Qiang, G. Hu, SHelp: automatic self-healing
for multiple application instances in a virtual machine environment, Proceedings —
IEEE International Conference on Cluster Computing ICCC (2010) 97-106, http://
dx.doi.org/10.1109/CLUSTER.2010.18.

S. Sidiroglou, O. Laadan, C.R. Perez, N. Viennot, J. Nieh, A.D. Keromytis, ASSURE:
automatic software self-healing using REscue points, Proceedings Architectural
Support for Programming Languages and Operating Systems (2009) 37-48, http://
dx.doi.org/10.1145/1508244.1508250.

I.P. Egwutuoha, S. Chen, D. Levy, B. Selic, R. Calvo, A proactive fault tolerance
approach to high performance computing (HPC) in the cloud, Second International
Conference on Cloud and Green Computing (2012) 268-273, http://dx.doi.org/10.
1109/CGC.2012.22.

R. Arvind, A. Vinnarsi, Temperature monitoring with the linux kernel on a multi
core processor, Int. J. Innov. Res. Sci. Eng. Technol. 4 (2015) 876-883, http://dx.
doi.org/10.15680/1JIRSET.2015.0403011.

K. Toshniwal, J.M. Conrad, A Web-based sensor monitoring system on a linux-based
single board computer platform, Conference Proceedings — IEEE SOUTHEASTCON
(2010) 371-374, http://dx.doi.org/10.1109/SECON.2010.5453851.

A.B. Nagarajan, F. Mueller, C. Engelmann, S.L. Scott, Proactive fault tolerance for
HPC with Xen virtualization, Proceedings of the 21st Annual International
Conference on Supercomputing ICS 07 (2007) 23-32, http://dx.doi.org/10.1145/
1274971.1274978.

T. Fukai, Y. Omote, T. Shinagawa, K. Kato, OS-independent live migration scheme
for bare-metal clouds, Proceedings IEEE/ACM 8th International Conference on
Utility and Cloud Computing (2015) 80-89, http://dx.doi.org/10.1109/UCC.
2015.23.

P. Rad, A.T. Chronopoulos, P. Lama, P. Madduri, C. Loader, Benchmarking bare
metal cloud servers for HPC applications, Proceedings IEEE International
Conference on Cloud Computing in Emerging Markets (2015) 153-159, http://dx.
doi.org/10.1109/CCEM.2015.13.

P. Jorgensen, D. Pauksztello, Classification of co-slicings and co-t-structures for the
kronecker algebra, J. Pure Appl. Algebr. 219 (2015) 569-590, http://dx.doi.org/10.
1016/j.jpaa.2014.05.015.

A. Bobbio, A. Puliafito, M. Scarpa, M. Telek, WebSPN: a WEB-accessible petri net
tool, International Conference on Web-Based Modeling & Simulation (1998)
137-142.

J. Liu, J. Zhou, R. Buyya, Software rejuvenation based fault tolerance scheme for
cloud applications, Proceedings IEEE 8th International Conference on Cloud
Computing (2015) 1115-1118, http://dx.doi.org/10.1109/CLOUD.2015.164.

D. Sun, G. Zhang, C. Wu, K. Li, W. Zheng, Building a fault tolerant framework with
deadline guarantee in big data stream computing environments, J. Comput. Syst.
Sci. (2017) 1-20, http://dx.doi.org/10.1016/j.jcss.2016.10.010.

S. Malik, F. Huet, Adaptive fault tolerance in real time cloud computing,
Proceedings — IEEE World Congress on Services (2011) 280-287, http://dx.doi.
org/10.1109/SERVICES.2011.108.

B. Mohammed, M. Kiran, I. Awan, K.M. Maiyama, An integrated virtualized strategy
for fault tolerance in cloud computing environment, International IEEE Conference
on Ubiquitous Intelligence & Computing (2016) 542-549, http://dx.doi.org/10.
1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.158.

R.N. Calheiros, R. Ranjan, A. Beloglazov, C.A.F. De Rose, R. Buyya, CloudSim: a
toolkit for modeling and simulation of cloud computing environments and eva-
luation of resource provisioning algorithms, Softw. — Pract. Exp. 41 (2011) 23-50,
http://dx.doi.org/10.1002/spe.995.

B. Nicolae, F. Cappello, BlobCR: efficient checkpoint-restart for HPC applications on
IaaS clouds using virtual disk image snapshots, Proceedings International
Conference for High Performance Computing, Networking, Storage and Analysis
(2011) 1-12, http://dx.doi.org/10.1145/2063384.2063429.

B. Nicolae, G. Antoniu, L. Boug, D. Moise, A. Carpen-Amarie, BlobSeer: next-gen-
eration data management for large scale infrastructures, J. Parallel Distrib. Comput.
71 (2011) 169-184, http://dx.doi.org/10.1016/j.jpdc.2010.08.004.

V.S. Costa, COWL: copy-on-write for logic programs, Poceedings International
Parallel Processing Symposium Held Jointly with the Symposium on Parallel and
Distributed Processing. (1999) 720-727.

Y. Zhang, Z. Zheng, M.R. Lyu, BFTCloud: a byzantine fault tolerance framework for
voluntary-resource cloud computing, Proceedings — IEEE 4th International
Conference on Cloud Computing (2011) 444-451, http://dx.doi.org/10.1109/
CLOUD.2011.16.

D.A. Menasce, P. Ngo, Understanding cloud computing: experimentation and ca-
pacity planning, Proceedings Computer Measurement Group Conf. (2009) 1-11
(10.1.1.158.21).

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[771

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

Computers in Industry 99 (2018) 156-172

G. Radhakrishnan, Adaptive application scaling for improving fault-tolerance and
availability in the cloud, Bell Labs Tech. J. 17 (2012) 5-14, http://dx.doi.org/10.
1002/bltj.21540.

Z. Zheng, T.C. Zhou, M.R. Lyu, I. King, Component ranking for fault-tolerant cloud
applications, IEEE Trans. Serv. Comput. 5 (2012) 540-550, http://dx.doi.org/10.
1109/TSC.2011.42.

Y.-S. Chen, Y. Pete Chong, Y. Tong, Theoretical foundation of the 80/20 rule,
Scientometrics 28 (1993) 183-204, http://dx.doi.org/10.1007/BF02016899.

M. Igbal, M. Rizwan, Application of 80/20 rule in software engineering waterfall
model, 2009 International Conference on Information and Communication
Technologies, ICICT 2009 (2009) 223-228, http://dx.doi.org/10.1109/ICICT.2009.
5267186.

T.E. Nisonger, The 80/20 rule and core journals, Ser. Libr. 55 (2008) 62-84, http://
dx.doi.org/10.1080/03615260801970774.

A. Tyrell, Recovery blocks and algorithm-based fault tolerance, Proceedings 22nd
Euromicro Conference (1996) 292-299, http://dx.doi.org/10.1109/EURMIC.1996.
546394.

L. Chen, A. Avizienis, N-version programming: a fault-tolerance approach to relia-
bility of software operation, Proceedings Twenty-Fifth International Symposium on
Fault-Tolerant Computing (1995) 113-119, http://dx.doi.org/10.1109/FTCSH.
1995.532621.

R. Goel, G.M. Shroff, Transparent parallel replication of logically partitioned da-
tabases, Proceedings 3rd International Conference on High Performance Computing
(1996) 132-137.

S.Yi, A. Andrzejak, D. Kondo, Monetary cost-aware checkpointing and migration on
amazon cloud spot instances, IEEE Trans. Serv. Comput. 5 (2012) 512-524.

R. Jhawar, V. Piuri, M. Santambrogio, Fault tolerance management in cloud com-
puting: a system-level perspective, IEEE Syst. J. 7 (2013) 288-297, http://dx.doi.
org/10.1109/JSYST.2012.2221934.

J. Cao, M. Simonin, G. Cooperman, C. Morin, Checkpointing as a service in het-
erogeneous cloud environments, Proceedings — 2015 IEEE/ACM 15th International
Symposium on Cluster, Cloud, and Grid Computing, CCGrid 2015 (2015) 61-70,
http://dx.doi.org/10.1109/CCGrid.2015.160.

D. Poola, K. Ramamohanarao, R. Buyya, Fault-tolerant workflow scheduling using
spot instances on clouds, Proceedings International Conference on Computational
Science (2014) 523-533, http://dx.doi.org/10.1016/j.procs.2014.05.047 Elsevier
Masson SAS.

M. Zhao, F. D’Ugard, K.A. Kwiat, C.A. Kamhoua, Multi-level VM replication based
survivability for mission-critical cloud computing, Proceedings 1st International
Workshop on Security for Emerging Distributed Network Technologies (2015)
1351-1356.

C.-A. Chen, M. Won, R. Stoleru, G.G. Xie, Energy-efficient fault-tolerant data storage
and processing in mobile cloud, IEEE Trans. Cloud Comput. 3 (2015) 28-41, http://
dx.doi.org/10.1109/TCC.2014.2326169.

L. Huang, Q. Xu, Lifetime reliability for load-sharing redundant systems with ar-
bitrary failure distributions, IEEE Trans. Reliab. 59 (2010) 319-330, http://dx.doi.
org/10.1109/TR.2010.2048679.

L. Al-Awami, H.S. Hassanein, Distributed data storage systems for data survivability
in wireless sensor networks using decentralized erasure codes, Comput. Netw. 97
(2016) 113-127, http://dx.doi.org/10.1016/j.comnet.2016.01.008.

J. Wang, W. Bao, X. Zhu, T. Yang, Y. Xiang, FESTAL: fault-tolerant elastic sche-
duling algorithm for real-time tasks in virtualized cloud, IEEE Trans. Comput. 64
(2015) 2545-2558, http://dx.doi.org/10.3969/].issn.1000-436x.2014.10.020.

J. Ansel, K. Arya, G. Cooperman, DMTCP: transparent checkpointing for cluster
computations and the desktop, Proceedings IEEE International Parallel and
Distributed Processing Symposium (2009) 1-12, http://dx.doi.org/10.1109/IPDPS.
2009.5161063.

Y. Ding, G. Yao, K. Hao, Fault-tolerant elastic scheduling algorithm for workflow in
cloud systems, Inf. Sci. (Ny) (2017), http://dx.doi.org/10.1016/].ins.2017.01.035.
M. Amoon, A framework for providing a hybrid fault tolerance in cloud computing,
Proceedings Science and Information Conference (2015) 844-849, http://dx.doi.
org/10.1109/SA1.2015.7237242.

M. Amoon, Adaptive framework for reliable cloud computing environment, IEEE
Access 4 (2016) 9469-9478, http://dx.doi.org/10.1109/ACCESS.2016.2623633.
Y. Sharma, B. Javadi, W. Si, D. Sun, Reliability and energy efficiency in cloud
computing systems: survey and taxonomy, J. Netw. Comput. Appl. 74 (2016)
66-85, http://dx.doi.org/10.1016/j.jnca.2016.08.010.

M.S. Goraya, L. Kaur, Fault tolerance task execution through cooperative computing
in grid, Parallel Process. Lett. 23 (2013) 1-20, http://dx.doi.org/10.1142/
S50129626413500035.

M. Hasan, M.S. Goraya, A framework for priority based task execution in the dis-
tributed computing environment, Proceedings IEEE International Conference on
Signal Processing, Computation and Control (2015) 155-158.

M. Amoon, A fault-tolerant scheduling system for computational grids, Comput.
Electr. Eng. 38 (2012) 399-412, http://dx.doi.org/10.1016/j.compeleceng.2011.
11.004.

A. Chmielowiec, S. Voulgaris, M. Steen, Decentralized group formation, J. Internet
Serv. Appl. 5 (2014) 1-18, http://dx.doi.org/10.1186/s13174-014-0012-2.

S. Bansal, P. Kumar, K. Singh, Dealing with heterogeneity through limited dupli-
cation for scheduling precedence constrained task graphs, J. Parallel Distrib.
Comput. 65 (2005) 479-491, http://dx.doi.org/10.1016/j.jpdc.2004.11.006.

S. Ren, M. van der Schaar, Dynamic scheduling and pricing in wireless cloud
computing, IEEE Trans. Mob. Comput. 13 (2014) 2283-2292, http://dx.doi.org/10.
1109/TMC.2013.57.

R. Birke, I. Giurgiu, L.Y. Chen, D. Wiesmann, T. Engbersen, Failure analysis of
virtual and physical machines: patterns, causes and characteristics, Proc. Int. Conf.

http://dx.doi.org/10.1109/TC.2013.30
http://dx.doi.org/10.1016/j.jpdc.2013.01.013
http://dx.doi.org/10.1016/j.jpdc.2013.01.013
http://dx.doi.org/10.1016/j.jpdc.2008.12.002
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0200
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0200
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0200
http://dx.doi.org/10.1080/10798587.2016.1152775
http://dx.doi.org/10.1080/10798587.2016.1152775
http://dx.doi.org/10.1109/CLOUD.2010.26
http://dx.doi.org/10.1109/CLUSTER.2010.18
http://dx.doi.org/10.1109/CLUSTER.2010.18
http://dx.doi.org/10.1145/1508244.1508250
http://dx.doi.org/10.1145/1508244.1508250
http://dx.doi.org/10.1109/CGC.2012.22
http://dx.doi.org/10.1109/CGC.2012.22
http://dx.doi.org/10.15680/IJIRSET.2015.0403011
http://dx.doi.org/10.15680/IJIRSET.2015.0403011
http://dx.doi.org/10.1109/SECON.2010.5453851
http://dx.doi.org/10.1145/1274971.1274978
http://dx.doi.org/10.1145/1274971.1274978
http://dx.doi.org/10.1109/UCC.2015.23
http://dx.doi.org/10.1109/UCC.2015.23
http://dx.doi.org/10.1109/CCEM.2015.13
http://dx.doi.org/10.1109/CCEM.2015.13
http://dx.doi.org/10.1016/j.jpaa.2014.05.015
http://dx.doi.org/10.1016/j.jpaa.2014.05.015
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0260
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0260
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0260
http://dx.doi.org/10.1109/CLOUD.2015.164
http://dx.doi.org/10.1016/j.jcss.2016.10.010
http://dx.doi.org/10.1109/SERVICES.2011.108
http://dx.doi.org/10.1109/SERVICES.2011.108
http://dx.doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.158
http://dx.doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.158
http://dx.doi.org/10.1002/spe.995
http://dx.doi.org/10.1145/2063384.2063429
http://dx.doi.org/10.1016/j.jpdc.2010.08.004
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0300
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0300
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0300
http://dx.doi.org/10.1109/CLOUD.2011.16
http://dx.doi.org/10.1109/CLOUD.2011.16
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0310
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0310
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0310
http://dx.doi.org/10.1002/bltj.21540
http://dx.doi.org/10.1002/bltj.21540
http://dx.doi.org/10.1109/TSC.2011.42
http://dx.doi.org/10.1109/TSC.2011.42
http://dx.doi.org/10.1007/BF02016899
http://dx.doi.org/10.1109/ICICT.2009.5267186
http://dx.doi.org/10.1109/ICICT.2009.5267186
http://dx.doi.org/10.1080/03615260801970774
http://dx.doi.org/10.1080/03615260801970774
http://dx.doi.org/10.1109/EURMIC.1996.546394
http://dx.doi.org/10.1109/EURMIC.1996.546394
http://dx.doi.org/10.1109/FTCSH.1995.532621
http://dx.doi.org/10.1109/FTCSH.1995.532621
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0350
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0350
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0350
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0355
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0355
http://dx.doi.org/10.1109/JSYST.2012.2221934
http://dx.doi.org/10.1109/JSYST.2012.2221934
http://dx.doi.org/10.1109/CCGrid.2015.160
http://dx.doi.org/10.1016/j.procs.2014.05.047
http://dx.doi.org/10.1016/j.procs.2014.05.047
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0375
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0375
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0375
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0375
http://dx.doi.org/10.1109/TCC.2014.2326169
http://dx.doi.org/10.1109/TCC.2014.2326169
http://dx.doi.org/10.1109/TR.2010.2048679
http://dx.doi.org/10.1109/TR.2010.2048679
http://dx.doi.org/10.1016/j.comnet.2016.01.008
http://dx.doi.org/10.3969/j.issn.1000-436x.2014.10.020
http://dx.doi.org/10.1109/IPDPS.2009.5161063
http://dx.doi.org/10.1109/IPDPS.2009.5161063
http://dx.doi.org/10.1016/j.ins.2017.01.035
http://dx.doi.org/10.1109/SAI.2015.7237242
http://dx.doi.org/10.1109/SAI.2015.7237242
http://dx.doi.org/10.1109/ACCESS.2016.2623633
http://dx.doi.org/10.1016/j.jnca.2016.08.010
http://dx.doi.org/10.1142/S0129626413500035
http://dx.doi.org/10.1142/S0129626413500035
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0430
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0430
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0430
http://dx.doi.org/10.1016/j.compeleceng.2011.11.004
http://dx.doi.org/10.1016/j.compeleceng.2011.11.004
http://dx.doi.org/10.1186/s13174-014-0012-2
http://dx.doi.org/10.1016/j.jpdc.2004.11.006
http://dx.doi.org/10.1109/TMC.2013.57
http://dx.doi.org/10.1109/TMC.2013.57

M. Hasan, M.S. Goraya

[92]

[93]

[94]

[95]

[96]

[97]

Depend. Syst. Netw. (2014) 1-12, http://dx.doi.org/10.1109/DSN.2014.18.

S.M. Abdulhamid, M.S. Abd Latiff, S.H.H. Madni, M. Abdullahi, Fault tolerance
aware scheduling technique for cloud computing environment using dynamic
clustering algorithm, Neural Comput. Appl. (2016) 1-15, http://dx.doi.org/10.
1007/500521-016-2448-8.

W. Chen, R.F. Da Silva, E. Deelman, T. Fahringer, Dynamic and fault-tolerant
clustering for scientific workflows, IEEE Trans. Cloud Comput. 4 (2016) 49-62,
http://dx.doi.org/10.1109/TCC.2015.2427200.

H. Idris, A.E. Ezugwu, S.B. Junaidu, A.O. Adewumi, An improved ant colony op-
timization algorithm with fault tolerance for job scheduling in grid computing
systems, PLoS One 12 (2017) 1-24, http://dx.doi.org/10.1371/journal.pone.
0177567.

A. Moghtadaeipour, R. Tavoli, A new approach to improve load balancing for in-
creasing fault tolerance and decreasing energy consumption in cloud computing,
International Conference on Knowledge-Based Engineering and Innovation (2015)
982-987.

A. Thakur, M.S. Goraya, A taxonomic survey on load balancing in cloud, J. Netw.
Comput. Appl. 98 (2017) 43-57, http://dx.doi.org/10.1016/j.jnca.2017.08.020.
N. Garg, M.S. Goraya, Task deadline-aware energy-efficient scheduling model for a
virtualized cloud, Arab. J. Sci. Eng. (2017), http://dx.doi.org/10.1007/s13369-
017-2779-5.

Moin Hasan received the B.E. degree in computer science
and engineering from Sant Longowal Institute of
Engineering and Technology, Sangrur, India, in 2012 and
the master’s degree in computer science and engineering
from Mangalayatan University, Aligarh, India, in 2014. He
then worked as a Research Scholar in the Department of
Computer Science and Engineering, Sant Longowal Institute
of Engineering and Technology, Sangrur, India, until March
2018. His areas of research interest include scheduling, load
balancing and fault tolerance in parallel and distributed
systems, including grid and cloud computing.

Computers in Industry 99 (2018) 156-172

Major S. Goraya received the B.E. degree in computer
science and engineering from Sant Longowal Institute of
Engineering and Technology, Sangrur, India, in 1997 and
the master’s and PhD degrees in computer science and en-
gineering from Punjabi University, Patiala, India, in 2003
and 2013, respectively. He is currently working as
Associate Professor in the Department of Computer Science
and Engineering, Sant Longowal Institute of Engineering
and Technology, Sangrur, India. His research interests in-
clude grid computing, cloud computing, and distributed
computing.

http://dx.doi.org/10.1109/DSN.2014.18
http://dx.doi.org/10.1007/s00521-016-2448-8
http://dx.doi.org/10.1007/s00521-016-2448-8
http://dx.doi.org/10.1109/TCC.2015.2427200
http://dx.doi.org/10.1371/journal.pone.0177567
http://dx.doi.org/10.1371/journal.pone.0177567
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0475
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0475
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0475
http://refhub.elsevier.com/S0166-3615(17)30443-8/sbref0475
http://dx.doi.org/10.1016/j.jnca.2017.08.020
http://dx.doi.org/10.1007/s13369-017-2779-5
http://dx.doi.org/10.1007/s13369-017-2779-5

	Fault tolerance in cloud computing environment: A systematic survey
	Introduction
	Motivation of the survey
	Scope of the survey
	Survey plan and organization

	Fault classification and architecture of fault tolerance in cloud
	Fault classification in cloud
	Architecture of fault tolerance in cloud

	Fault tolerance approaches in cloud
	Proactive approaches
	Self-Healing
	Pre-emptive migration
	System rejuvenation

	Reactive approaches
	Checkpoint restart
	Job migration
	Replication

	Fault tolerance frameworks
	Proactive fault tolerance frameworks
	SHelp
	PFHC
	WSRC
	SRFSC
	FTDG

	Reactive fault tolerance frameworks
	AFTRC
	BlobCR
	BFTCloud
	AASIF
	DAFT
	FTCloud
	CAMAS
	FTM
	FWSS
	MVRS
	k-out-of-n FT framework
	FESTAL
	CACS
	IRW
	SAFTP
	SAFTP

	Discussion
	Research directions
	Conclusions
	Acknowledgements
	References

